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Abstract
Background: Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as
pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to
target immature central nervous system at dose levels well below the threshold of systemic
toxicity. So far, few data are available on the potential short- and long-term adverse effects in
children deriving from low-level exposures during prenatal life and infancy.

Methods: Late gestational exposure [gestational day (GD) 14–17] to CPF at the dose of 6 mg/kg
was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor
maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission
after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed
in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage
and in response to presentation of a pup previously removed from the nest was scored on PND
4, to verify potential alterations in maternal care directly induced by CPF administration.

Results: As for the effects on the offspring, results indicated that on PND 10, CPF significantly
decreased number and duration of ultrasonic calls while increasing latency to emit the first call after
isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia
was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation
with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels
of both pup-directed (licking) and explorative (wall rearing) responses.

Conclusion: Overall our results are consistent with previous epidemiological data on OP
neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF
exposure during development in rodent studies, with potential translational value to human infants.

Background
The OP chlorpyrifos is a non-persistent insecticide widely
employed in domestic, agricultural and non-agricultural

(i.e. schools, golf courses, parks) settings. Its toxicity,
related to inhibition of brain and systemic acetylcho-
linesterase (AChE), is well documented after acute poi-
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soning of adults. The evaluation of CPF neurotoxicity after
sub-toxic exposure and in developing organisms appears
more controversial, as most of available animal studies
indicates that CPF exposure below the threshold for sys-
temic toxicity exerts disruptive effects on CNS develop-
ment and behavior [1-12]. In the last decade, increased
concern has been raised about adverse effects of pesticides
on central nervous system (CNS) development [13,14].
Prolonged exposure, multiple ways of exposure, and
exposure to mixture of pesticides could indeed determine
– also at apparently sub-toxic doses – a level of CPF bur-
den compatible with increased health risk. The US Envi-
ronmental Protection Agency (EPA) imposed a ban on its
sale for residential use [15], thus the use of CPF in the USA
has been restricted to agricultural applications only. How-
ever, agricultural and non-agricultural use remains of
some concern and the final report of Interim Reregistra-
tion Eligibility Decision foresees mitigation measures to
reduce some occupational and ecological exposures by
eliminating use sites and reducing application rates [16].
In Europe, regardless of the wide and frequently OPs use,
with CPF the top selling insecticide [17], no restrictions of
use site or application rate are currently required [18].

A recent review [19] summarizes epidemiological studies
that support the developmental neurotoxicity of OPs,
although limitations of the available data were overtly
admitted. In the CHAMACOS cohort study, including
women resident in an area of major agricultural produc-
tion, the presence of the OP metabolite dialkylphosphate
(DAP) in maternal urine or blood was associated with
impaired reflex functioning in infants after PND 3 [20].
Similar data are reported in a birth cohort study from New
York City [21]. Impairment in mental and psychomotor
performance and attention problems in infants assessed at
12, 24, and 36 months were found to be associated with
CPF levels in the cord blood in a longitudinal birth study
of inner-city mothers [22]. Comparable behavioral prob-
lems were reported in the CHAMACOS cohort in 24-
month-old children [23].

Despite results from epidemiological studies indicate that
some effects of developmental exposure to CPF are
already evident in early infancy, few rodent studies so far
have focused on the behavioral effects of CPF in the early
developmental phases. In preweaning rats righting reflex
and cliff avoidance tests were markedly altered following
repeated, low-level CPF exposures during late gestation
[24]. Deficits in righting reflex and geotaxis response were
also reported in rat female pups after PND 1–4 exposure
[6]. In a mouse model of gene-environment interactions,
prenatal chlorpyrifos exposure per se induced an acceler-
ating effect on maturation of grasping reflex in mutant
Reeler mice [25].

Altricial species, such as rodents, may represent a useful
animal model to mimic the immature development of
body and motor skills in humans at birth [26]. In rodents
several reflexes and behavioral responses show a remark-
able regularity in their time of appearance and subsequent
maturation, thus representing a reliable tool for assessing
abnormalities in early neurodevelopment [27,28]. Batter-
ies of developmental milestones have been designed to
describe early neurodevelopment of newborn rodents and
include behavioral markers of maturation of propriocep-
tion (tactile response such as grasping, placing etc), and
vestibular function which involves acquisition of coordi-
nation and adequate strength [29,30]. The ontogenetic
profile of rodent neurobehavioral development can also
be measured by the analysis of the species-specific emis-
sion of ultrasound vocalizations (USVs) which are charac-
terized by frequencies ranging from 30 to 90 kHz. USVs
present a clear ontogenetic profile peaking around day
eight after birth and decreasing close to zero when pups
are 2-weeks old [31-33], and are elicited in neonate
rodents by several environmental and pharmacological
stimuli [34,35]. Several experimental evidences support
USVs as indicators of the emotional state of neonate
rodents [36,37] with an important role in the establish-
ment of the mother – offspring bond [38].

In this study we evaluate the effects of late gestational CPF
exposure (GD 14–17) on early neurobehavioral develop-
ment in mouse pups in order to extend our previous stud-
ies on CPF developmental exposure, that were principally
focused on long-term neurobehavioral effects. The dose of
CPF selected (6 mg/kg) does not elicit systemic toxicity in
pregnant females and their offspring and fails to inhibit
brain AChE of pups at birth as previously shown using the
same CPF dose, and this same treatment schedule in the
CD-1 mouse strain [10]. Throughout the first fifteen post-
natal days, analysis of sensorimotor reflex maturation was
carried out, and the ontogenetic profile of USV emission
after isolation from the mother was assessed on PND 4, 7,
and 10. Our interest towards USV emission was threefold:
1) USV are one of the few early markers of neurobehavio-
ral development in rodent models; 2) we found in our
previous studies on developmental CPF exposure long-
term alterations in behaviors that reflect emotional/affec-
tive states in mice, such as agonistic behavior in adult
males [10], maternal aggression [12], social novelty [11]
and maternal behavior [10,12], and USV are an appropri-
ate end point to assess emotional responses early in life;
3) developmental CPF exposure is reported to interfere
with the expression of serotonergic receptors as well as
with serotonin turn-over [2,8], and to increase oxytocin
hypothalamic levels [39]. Ultrasonic calls are modulated
both by serotonergic and oxytocinergic neurotransmis-
sion [40-43]. We also analyzed spontaneous behavior of
pups on PND 12, to evaluate overall level of activity and
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quality of the age-specific motility repertoire. In addition,
in order to evidence potential changes in females' behav-
ior induced by gestational CPF administration, a selection
of maternal responses of lactating females was assessed
when offspring were 4-days old.

Methods
Animals and Treatments
All experiments on animals were performed according to
the European Community Council Directive 86/609/EEC
and to Italian Legislation on Animal Experimentation
(Legislative Decree 116/92). Male and female mice of a
Swiss-derived outbreed strain (CD-1, Harlan, S. Pietro al
Natisone, Italy), were housed in breeding cages with a 12-
hr light-dark cycle (light on 20:00-8:00) and with free
access to food and water. Females were inspected daily for
the presence of the vaginal plug (GD 0). The stud was
removed 10 days after the discovery of the vaginal plug.
On GD 15 forty females were randomly assigned to one of
the two prenatal treatments [vehicle (Veh), CPF]. CPF
(Chem. Service, West Chester, PA) was dissolved in pea-
nut oil (Veh) to provide rapid and complete absorption.
CPF (in a volume of 0.1 ml/10 g at a dose of 6 mg/kg) or
its vehicle was administered to pregnant females from GD
15 to 18 by intraoral gavages. We have previously shown
a 75% serum AChE inhibition 24 hr after termination of
same CPF treatment in pregnant females, while brain
AChE activity was reduced to 60% of control values, an
effect no longer detectable 24 h later [10]. However, the
observed AChE inhibition was not associated with any
sign of systemic toxicity and/or weight loss in pregnant
females or altered reproductive performances (fetus via-
bility, number of pups delivered, sex ratio and mean pups'
weight at birth). Furthermore, this CPF treatment sched-
ule did not affect brain AChE activity in offspring, but
causes a mild transient inhibition (20% of control values)
in serum AChE activity at birth [10].

Thirty-four litters (18 Vehicle-treated and 16 CPF-treated)
were used and culled at birth to five males and five
females. Assessment of sex of the pups was done by eval-
uation of anogenital distance [44]. On the day of birth,
three pups were tattooed with permanent ink on their
limbs for individual identification and randomly assigned
to one of the following experiment: sensorimotor assess-
ment and spontaneous behavior (one male and one
female from each litter), USV recording (one male). The
remaining pups were left undisturbed till weaning and
subsequently assigned to a different experiment.

Dams' behavior
A selection of maternal responses expressed by individual
dams (Veh, n = 15; CPF, n = 15) was recorded on post-par-
tum day 4. All observations (about 10 minutes each) were
made under red light in an experimental room separated

from the animal colony and kept in standard environ-
mental conditions. The observations were made between
10:00 and 14:00 hr and were performed by a trained
observer blind to the assignment of the dams to the differ-
ent treatment groups. Each observation consisted of two
sessions: Session 1 (8 min): after removal of one male pup
[this pup was concomitantly evaluated for USV in a sound
proof experimental room (see below)]. Session 2 (2 min):
after this same male pup was returned to the home cage.

The following behavioral categories were considered:
Pup-directed behaviors – Retrieving: the female is picking
up the pup in her mouth and carrying it to the nest; Lick-
ing: the animal is licking any part of the pup's body, pri-
marily the anon-genital region; Sniffing: the female is
sniffing one or more pups; Crouching: the female's body
is arched over the pups with no other apparent move-
ment. Non pup-directed behaviors – Digging: digging in
the sawdust out of nest side, pushing and kicking it
around using the snout and/or both forepaws and hind
paws, in most cases the animals are moving around the
cage, sometimes changing the whole arrangement of the
substrate material; Self-grooming: the female is wiping,
licking, combing or scratching any part of its own body;
Wall Rearing: the female rears on hind limbs, while lean-
ing with the forelimbs on the cage walls (or not), often
sniffing the air; Locomotion: body movements assessed
by number of crossing of two virtual lines dividing the
cage in three sectors on the screen during videotape anal-
ysis; Resting.

Frequency and duration of each behavioral category were
collected using The Observer software (Noldus, Wagenin-
gen, NL) by an individual blind to the experimental con-
ditions.

Assessment of Somatic and Behavioral Development 
(PNDs 3, 6, 9, 12 and 15)
On PND 3, 6, 9, 12, and 15, one male and one female
from each litter in each treatment group (Veh n = 18 M, 18
F; CPF n = 16 M, 16 F) were assessed for somatic and neu-
robehavioral development.

Pups were weighed to the nearest 0.01 g and their body
was measured by a flexible rule to the nearest 0.1 cm. Hair
growth, day of eyelid opening, and incisor eruption were
also recorded.

Pups were then assessed for a number of measures cur-
rently used in the study of sensorimotor ontogeny in mice
according to a slightly modified Fox battery [25,29,45].
The tests were conducted during the dark period between
09:00 and 14:00 hr under red light, each subject being
tested at approximately the same time of the day. The fol-
lowing reflexes and responses were considered:
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Quantitative data
Righting reflex: pup turns over with all four feet on the
ground when placed on its back. The reflex was tested
three times with a cut-off latency of 30 s. Data for the best
performance (shorter latency) and data for the worst per-
formance (longer latency) were analyzed separately;
Grasping reflex: to evaluate the strength of grasping reflex,
pups were placed on a narrow mesh metal grid in an hor-
izontal position. The grid was progressively tilted to a ver-
tical position (+ 90°) and further to a horizontal upside-
down position (+ 180°), the angle of the grid at which
pup falls is termed "fall angle". The test was repeated
thrice, and the mean angle reached was recorded; Cliff
aversion: pup withdraws from the edge of a flat surface
when its snout and forepaws are placed over the "cliff",
time of aversion was recorded with a cut-off of 10 s.

Qualitative data
Forelimb and hind limb placing reflexes: pup raises and
places its fore- or hind paw on the surface of the edge of
an object when stroked on the dorsum of the paw; Fore-
limb and hind limb stick grasp reflexes: pup grasps a
toothpick when the fore- or hind paw is stroked; Pole
grasping: pup grips a wooden pencil with its forepaws;
The following scores were used for qualitative somatic
and behavioral variables so far mentioned: 0 = no
response; 1 = uncertain response; 2 = incomplete
response; 3 = full response.

Ultrasonic Vocalization (PNDs 4, 7, 10)
Ultrasonic calls of one male from each litter in each treat-
ment group (Veh n = 15; CPF n = 15) were recorded in a
sound-attenuating chamber (Amplisilence, I-10070
Robassomero, Italy) during the dark period between
10:00 and 14:00 hr. Single pups were removed from the
home cage and individually placed in a glass container
(diameter 5 cm, height 10 cm). The number of ultrasonic
calls emitted during the 4 min test was assessed using an
ultrasonic microphone (Avisoft UltraSoundGate con-
denser microphone capsule CM16, Avisoft Bioacoustics,
Berlin, Germany) sensitive to frequencies between 10–
180 kHz was suspended 10 cm above the glass. Vocaliza-
tions were recorded using an Avisoft Recorder (Version
3.2). Settings included sampling rate at 250 kHz; format
16 bit. For acoustical analysis, recordings were transferred
to Avisoft SASLab Pro (Version 4.40) and a fast Fourier
transformation (FFT) was conducted. Spectrograms were
generated with an FFT-length of 512 points and a time
window overlap of 75% (100% Frame, Hamming win-
dow). The spectrogram was produced at a frequency reso-
lution of 488 Hz and a time resolution of 1 ms. A lower
cut-off frequency of 15 kHz was used to reduce back-
ground noise outside the relevant frequency band to 0 dB.
Call detection was provided by an automatic threshold-
based algorithm and a hold-time mechanism (hold time:

0.005 s). An experienced user checked the accuracy of call
detection, and obtained a 100% concordance between
automated and observational detection. Parameters ana-
lyzed included for each test day number of calls, duration
of calls, frequency (kHz) and amplitude at maximum of
the spectrum.

At the end of the 4 min recording session, the axillary tem-
perature of each pup was measured by gentle insertion of
the thermal probe in the skin pocket between upper fore-
leg and chest of the animal for about 30 s (Microprobe
digital thermometer with mouse probe, Stoelting Co., Illi-
nois, USA).

Spontaneous motor behavior (PND 12)
One male and one female pup from each litter assigned to
the two experimental conditions were assessed for their
spontaneous motor behavior on PND 12 (Veh, n = 13 M,
13 F; CPF, n = 14 M, 14 F). All observations (one session
of 5 min) were made under red light in an experimental
room separated from the animal colony and kept in
standard environmental conditions. The observations
were made between 10:00 and 14:00 hr. Pups were indi-
vidually introduced in a glass cylinder (14 cm diameter, 8
cm height) with adsorbent paper on the floor kept in an
incubator set at 30 ± 1°C.

The following behavioral items were collected: Crossing
(forward movements of the body); Immobility (no visible
movements of the body); Head moving (head raising and
head turning); Wall climbing; Pivoting (turning to left or
right propelled only by forelimbs; hind limbs stationary);
Grooming (signs of wiping).

Frequency and duration of each behavioral category were
collected using The Observer software (Noldus, Wagenin-
gen, NL) by an experimenter blind to the experimental
condition of the animals.

Statistical analysis
Parametric analysis of variance (ANOVA) was performed
on frequency and duration of dams' behavior responses,
USV data, pups' body weight and length, Grasping, Right-
ing and Cliff avoidance data. Specifically: ANOVA model
for maternal behavior data included prenatal treatment (2
levels) as between-subject fixed factor; ANOVA model for
USV data included prenatal treatment (2 levels) as
between-subject fixed factor and days as repeated measure
factor (3 levels); ANOVA model for pups' body weight
and length, Grasping, Righting and Cliff avoidance
reflexes included prenatal treatment (2 levels) as between-
litter fixed factor, litter as random blocking factor nested
within prenatal treatment and blocking factor for sex and
days, sex as within-litter fixed factor (2 levels) and day as
repeated measure factor (5 levels).
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Posthoc comparisons were performed using Tukey's HSD
test, which can be used in the absence of significant
ANOVA results [46].

Non-parametric analyses of variance (ANOVAs) were per-
formed on qualitative data for sensorimotor maturation:
for each reflex a synthetic measure of the score profile
across days was computed (area under the curve generated
by the repeated scores) and Mann-Whitney U test was
applied. Moreover, in order to obtain information on dif-
ferences in maturation level across days, a Total Daily
Score was computed for each subject in each day of test-
ing, by summing the scores of all reflexes recorded on that
subject in that day. The Total Daily Score was analyzed by
parametric ANOVA, including prenatal treatment (2 lev-
els) as between-litter fixed factor, litter as random block-
ing factor nested within prenatal treatment and blocking
factor for sex and days, sex as within-litter fixed factor (2
levels) and day as repeated measures factor (5 levels). The
Mann-Whitney U test was also performed day-by-day.
When performing the Mann-Whitney U test (for both area
under the curve and Total Daily Score), the response vari-
able was transformed by summing the observations on
the two subjects (one male and one female) per litter, to
assess main effect of prenatal treatment, and by comput-
ing the difference between the observations from the same
two subjects, to assess the interaction prenatal treatment x
sex. Data are reported by means ± SEM.

Results
Reproductive performance
On PND 0 data analysis on number of delivered pups
(Veh: 11.5 ± 0.5 CPF: 10.2 ± 0.7); sex rate (% males Veh:
41.6 ± 2.6, CPF: 42.3 ± 3.6; % females Veh: 57.0 ± 2.8,
CPF: 51.8 ± 4.1) and overall litter weight (Veh, 20.19 ±
0.91 g; CPF, 19.81 ± 1.15 g) did not show any detrimental
effect of gestational CPF exposure.

Dams' behavior
CPF gestational exposure did not affect maternal
responses recorded during Session 1 (data not shown).

During Session 2, latency to retrieve the male pup
returned to the home cage was not altered by CPF. As for
Licking response towards all the pups, CPF tended to
increase its duration [F (1, 28) = 3.44 p = 0.07] (see Figure
1). The other pup-directed maternal behaviors were not
affected by CPF during Session 2. As for non pup-directed
behaviors, CPF significantly increased Wall rearing [dura-
tion: F (1, 28) = 7.85 p = 0.01; frequency: F (1, 28) = 3.99
p = 0.05] and decreased Digging duration [F (1, 28) = 6.46
p = 0.01].

Dams' BehaviorFigure 1
Dams' Behavior. Selected pup-directed and non pup-
directed behaviors displayed by Veh and CPF treated females 
on postpartum day 4, after the pup was returned to the 
home cage. Session lasted two minutes. * p < 0.05. Veh, n = 
15; CPF, n = 15.
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Assessment of Somatic and Neurobehavioral Development 
(PNDs 3, 6, 9, 12, and 15)
A significant treatment x sex interaction was found for
Body length [F (1, 32) = 8.67 p < 0.01], with CPF males
being shorter than Veh controls (post hoc comparisons p
< 0.05, see Table 1). As for body weight gain neither a
main effect of CPF nor a CPF interaction with treatment,
sex or day was found.

As for quantitative data on sensorimotor coordination
development, CPF did not affect Grasping, Righting and
Cliff aversion reflexes.

Non-parametric analysis conducted on each reflex score
profile across days only evidenced a trend towards
delayed appearance of Hind limb grasping in CPF
exposed pups [Mann-Whitney U (18,16) = 90.5 p = 0.06].
As for the Total Daily Score, sum of the single qualitative
daily reflex scores, parametric analysis showed a main
effect of treatment (mean data shown in Table 1) just
missing statistical significance [F (1, 30) = 3.65 p = 0.06]
and no interaction of treatment with sex or day; the non-
parametric analysis, conducted on the Total Daily Score in
each day, evidenced a lower score in CPF exposed pups on
PND15 [U (16, 16) = 79 p = 0.06].

Ultrasonic Vocalization (PNDs 4, 7, 10)
A significant interaction between CPF and day was found
for number and duration of ultrasonic calls [F (1, 56) =

4.65 p = 0.01; F (1, 56) = 3.56 p = 0.03 respectively]. Post
hoc comparisons showed that CPF decreased both
number and duration of calls of CPF male pups on PND
10 (Ps < 0.05). Peak frequency of calls was significantly
increased in CPF pups on PND 10 [treatment x day inter-
action: F (2, 56) = 2.41 p = 0.09, p < 0.05 after post hoc
comparisons], while no effect was observed for Peak
amplitude. Finally, a significant CPF delaying effect was
found for the emission of the first call [U (15, 15) = 65 p
= 0.04] on PND 10 (see Figure 2).

Spontaneous behavior (PND 12)
CPF did not interfere with the overall level of locomotor
activity measured by number of crossings. However, CPF
pups displayed significantly less Pivoting behavior [F (1,
25) = 5.82 p = 0.02, F (1, 25) = 5.19 p = 0.03 for frequency
and duration respectively,] than control pups and showed
a parallel increase of Immobility [F (1, 25) = 4.28 p = 0.05,
F (1, 25) = 4.67 p = 0.04 for frequency and duration
respectively] (see Figure 3).

Discussion
Overall the results of the present study show that admin-
istration of CPF in late gestation results in early behavioral
alterations in mouse pups. The assessment of neurodevel-
opment across the first 15 days after birth indicates a sig-
nificant depressive effect of CPF on pup behavior after day
10th of postnatal life that concerns both distress response
to isolation from the mother and motor skills.

Table 1: Somatic and reflex maturation of pups prenatally exposed to Veh or CPF (6 mg/kg).

Body Lenght (cm)

3 6 9 12 15
Veh m 3.04 ± 0.03 3.34 ± 0.03 3.67 ± 0.04 4.06 ± 0.07 4.54 ± 0.08
CPF * 2.97 ± 0.05 3.27 ± 0.04 3.61 ± 0.05 3.86 ± 0.06 4.29 ± 0.08

Veh f 3.02 ± 0.04 3.36 ± 0.04 3.61 ± 0.04 4.04 ± 0.06 4.43 ± 0.08
CPF 3.00 ± 0.04 3.38 ± 0.04 3.64 ± 0.04 4.02 ± 0.07 4.44 ± 0.09

Body Weight (g)

3 6 9 12 15
Veh m 2.78 ± 0.06 4.61 ± 0.08 6.51 ± 0.18 7.84 ± 0.23 9.12 ± 0.25
CPF 2.88 ± 0.06 4.67 ± 0.12 6.45 ± 0.19 7.63 ± 0.22 8.94 ± 0.22

Veh f 2.77 ± 0.06 4.39 ± 0.13 6.14 ± 0.18 7.74 ± 0.22 9.06 ± 0.23
CPF 2.77 ± 0.09 4.57 ± 0.12 6.39 ± 0.12 7.71 ± 0.18 8.98 ± 0.20

Total daily qualitative score

3 6 9 12 15
Veh 2.78 ± 0.17 5.28 ± 0.16 8.66 ± 0.18 12.44 ± 0.22 18.44 ± 0.22
CPF 2.53 ± 0.12 5.09 ± 0.14 8.69 ± 0.15 11.97 ± 0.24 17.50 ± 0.29

Data are indicated as (Mean ± SEM).
* p < 0.05 after posthoc comparisons, see Results
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Ultrasound vocalization parametersFigure 2
Ultrasound vocalization parameters. Quantitative ultrasound vocalization data recorded on PND 4, 7, and 10 during a 4- 
min session. * p < 0.05, ** p < 0.01. Inset graph (upper panel): Latency to emit the first call on PND10, data are median ± inter-
quartile range. Veh n = 15 (only males); CPF, n = 15 (only males).
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The analysis of somatic development indicates that CPF
failed to affect body weight but reduced body length in
male pups. This effect, that is suggestive of a subtle growth
delay, is in partial agreement with what reported by one
epidemiological study [47] evidencing decreased somatic
growth at birth in neonates born from urban minorities
women in New York City, associated with cord plasma
CPF levels.

As for sensorimotor development, only a general trend
towards hyporeflexia was shown by CPF mice when con-
sidering either a total score of maturation or single reflex
analysis (hind limb grasping). Indeed, all effects on
reflexes remain at the margin of significance and thus
lying in the uncomfortable range where definitive conclu-
sions about a retarding CPF effect cannot be drawn. In the
rat species perinatal CPF administration at a dose compa-
rable with the one used in the present study was found to
delay early somatic and sensorimotor development of the
offspring [24,48]. However in these two rat studies CPF

was administered for longer periods than in the present
mouse study. Thus it is possible that only when CPF expo-
sure covers a large portion of gestation it induces statisti-
cally detectable neurodevelopmental delays. In humans
too abnormal reflexes have been reported after prolonged
exposure, namely either in infants born from mothers
exposed to different OPs from a urban cohort [21], and
from a Californian cohort of farm working women [20].

The clear depressive effect of prenatal CPF on ultrasonic
vocalizations observed in 10-day-old pups represents the
main finding of the present study. CPF exposure resulted
in lower reactivity to isolation (higher latency to emit the
first call), decreased number and duration of vocaliza-
tions, and finally in a higher peak frequency of the calls.
Furthermore, the altered profile of ultrasound emission
was accompanied by significant changes in spontaneous
motor behavior on PND 12: CPF-exposed pups displayed
less Pivoting – a typical neonatal motor pattern in rodents
– associated with a higher level of immobility. It is worth

Spontaneous behavior of 12-day-old pupsFigure 3
Spontaneous behavior of 12-day-old pups. Behavioral responses recorded during the Spontaneous behavior test on PND 
12. As for Pivoting and Immobility behavior a main effect of the treatment was found (p < 0.05; see Results section). Veh, n= 13 
(both males and females); CPF, n = 14 (both males and females).
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noting that a selective impairment in early motor reflexes,
such as crawling, has been observed in newborns exposed
prenatally to OPs [20,21].

A large body of data define USV emission as a phenome-
non that may contribute both to maintenance of stable
body temperature and homeostasis [49], playing at the
same time a communicative role in stimulating the
mother to look for and retrieve the pup, thus functioning
as an indicator of the affective state of the pup [50]. In a
translational perspective, it is remarkable that rather sim-
ilar hypotheses have been drawn to interpret human
infant cry. Organs and structures (larynx, thoracic and
abdominal muscles etc.) and neurological systems which
modulate infant vocalizations (vagal nerve, brainstem
and limbic system) are widely shared in mammals
[34,51,52]. A large number of studies on rodent models
clearly demonstrate that USVs are a sensitive (and almost
unique) and reliable marker to detect short-term neuro-
toxic effects of developmental exposure to environmental
contaminants [53-55]. USVs are also sensitive to pre- and
peri-natal neurotoxic effects of psychoactive drugs
[56,57].

Our results show alterations in selective features of pup
vocalizations which parallel some of those currently
adopted to analyze infant cry, including number and
duration of calls (utterance), peak frequency (hyperpho-
nation), and latency to emit the first call. These results
thus candidate rodent neonatal USVs as an early marker in
preclinical studies and potential predictors of CPF long-
term effects on emotional and social competencies
already reported at adulthood [10-12]. In addition, the
present results support the use of acoustic cry analysis in
the screening for the effects of developmental exposure to
OP pesticides in humans. Selected cry features have been
associated with condition of potential neurological
insults such as prematurity [58], developmental exposure
to metals [59], and substance of abuse such as alcohol and
cocaine [60,61]. More importantly, in human infants
atypical cry has been also reported concomitantly with
poor performance on Brazelton-modified scale [61], a
neurological assessment methodology analogues to the
neurological reflex battery also applied to mouse pups in
the present study [29].

Although we can not exclude that alterations in ultrasonic
vocalization resulting from CPF exposure are also present
later on in development, our results show a peculiar age
profile with a significant decrease only on PND 10 and
absence of effects on PND 4 and 7; in other words the
impact of the prenatal CPF exposure was detectable only
during the second postnatal week and not before, i.e.
closer to time of exposure. We can only speculate on the
biological mechanisms underlying the peculiar time

course of prenatal CPF effects on USVs. Neonatal USV
response is modulated by multiple neurotransmitter sys-
tems, and both the cholinergic [35,62] and the serotoner-
gic circuitries have been involved in USVs. Both these two
neurotransmitter systems are considered primary targets
of developmental CPF exposure at doses not involving
significant inhibition of AChE activity [1,63,64]. How-
ever, cholinergic and serotonergic manipulations differ-
ently affect the USV profile, with effects detectable at all
neonatal ages considered, as early as PND 3 for serotoner-
gic [65] and PND 5 for cholinergic agents [35].

USVs emission in neonatal rodents is also modulated by
the hypothalamic neuropeptides oxytocin (OT) and vaso-
pressin (AVP), as demonstrated by exogenous administra-
tion of the neuropeptides and their antagonists in
neonatal rat pups [40,66], and by USVs recorded in OT
and AVP 1b receptor knockout (V1b ko) mice [41,43].

Two lines of evidence candidate these hypothalamic neu-
ropeptides as potential neural targets for the observed CPF
effects on USVs in 10-days old animals. Firstly, we have
recently shown that the same dose of prenatal CPF used in
the present study induces long-term enhancement of OT
protein levels in the hypothalamus, and an associated
decrease of AVP expression in the same brain area, with
males presenting the most intense effect [39]. Secondly,
data concerning the profile of OT receptor during the early
phases of postnatal development clearly indicate a peak of
expression starting from the second postnatal week in dif-
ferent brain regions [42], a profile also confirmed by
recent behavioral data concerning OT modulation of hud-
dling response in 10-day-old but not in 7-day-old rats
[67]. Further research on neuropeptidergic CNS levels in
pups developmentally exposed to CPF is needed to assess
if the changes in OT and AVP observed in adults exposed
prenatally to CPF are already detectable in the first two
weeks of postnatal life and are then associated with USV
changes, or if such deficit in vocalizations is a component
of a general delay in motor activation as signaled by the
alteration in spontaneous motor behavior.

Finally, our data suggest for the first time behavioral
changes in females administered with CPF during preg-
nancy, in the absence of overt toxicity signs. CPF did not
alter the time to retrieve the male pup, but increased the
level of exploratory activity (Wall Rearing). Such activa-
tion may be a delayed effect of the transient inhibition of
brain AChE, even if at the time of testing four days had
elapsed from the last CPF administration, and AChE brain
activity levels were back to control levels (see [10]). CPF
tended to increase licking after the reunion with the male
pup, but this effect was likely due to a more active
response to novelty, rather than to alteration of specific
aspects of maternal care. Alterations in pups' licking has
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been evidenced in females developmentally exposed to
CPF, in the absence of significant effects on general mater-
nal responsiveness [10,12]. A more detailed analysis of
how CPF interferes with the unique metabolic and endo-
crine condition represented by pregnancy and with the
establishment of the mother-offspring bond appears war-
ranted.

Conclusion
Overall, results from this study show that a prenatal CPF
exposure restricted to 4 days in late gestation is sufficient
to determine a poor behavioral outcome characterized by
diminished responsiveness to a distress condition and
reduced motor activity. The specificity of the behavioral
responses affected by CPF in the present study confirms
that developmental CPF targets, among the others, behav-
ioral domains involved in the regulation of affective
states, a feature previously reported both in rat and mouse
studies at adulthood. A further important aspect is the
translational value of our results, as the changes in USV
patterns in rodents suggest to clinicians to consider the
pattern of infant cry, further to maturation of sensorimo-
tor reflexes, as early marker for the evaluation of the risk
associate to developmental OP exposure.
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