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Abstract 

Background:  Numerous studies have suggested significant associations between prenatal exposure to heavy metals 
and newborn anthropometric measures. However, little is known about the effect of various heavy metal mixtures at 
relatively low concentrations. Hence, this study aimed to investigate associations between prenatal exposures to a 
wide range of individual heavy metals and heavy metal mixtures with anthropometric measures of newborns.

Methods:  We recruited 975 mother–term infant pairs from two major hospitals in Israel. Associations between eight 
heavy metals (arsenic, cadmium, chromium, mercury, nickel, lead, selenium, and thallium) detected in maternal urine 
samples on the day of delivery with weight, length, and head circumference at birth were estimated using linear and 
Bayesian kernel machine regression (BKMR) models.

Results:  Most heavy metals examined in our study were observed in lower concentrations than in other studies, 
except for selenium. In the linear as well as the BKMR models, birth weight and length were negatively associated 
with levels of chromium. Birth weight was found to be negatively associated with thallium and positively associated 
with nickel.

Conclusion:  By using a large sample size and advanced statistical models, we could examine the association 
between prenatal exposure to metals in relatively low concentrations and anthropometric measures of newborns. 
Chromium was suggested to be the most influential metal in the mixture, and its associations with birth weight and 
length were found negative. Head circumference was neither associated with any of the metals, yet the levels of met‑
als detected in our sample were relatively low. The suggested associations should be further investigated and could 
shed light on complex biochemical processes involved in intrauterine fetal development.

Keywords:  Anthropometric Measures, Prenatal Exposure, Pregnancy, Metals, BKMR

Introduction
Heavy metals are naturally occurring elements with 
a high atomic weight and density at least five times 
greater than water. Some of these heavy metals are 
essential nutrients in the body, and a deficiency in 
one of them can result in diseases [1]. On the other 
hand, over-consumption and exposure to high lev-
els of heavy metals have been associated with adverse 
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health outcomes [2–4]. Over-exposure of both mother 
and fetus to heavy metals during pregnancy[5] has been 
associated with preterm birth and reduced birth size 
[6–8].

While the mechanisms underlying the effect of over-
exposure to heavy metals on the development of new-
borns remain the subject of ongoing studies [9, 10], some 
heavy metals, including cadmium (Cd), mercury (Hg), 
lead (Pb), and selenium (Se), have been found to cross the 
placental barrier [11] and accumulate in the fetal blood 
circulation. The associations between prenatal exposure 
to these metals and adverse birth outcomes have been 
widely studied and raised possible associations with 
shorter birth length [12], low birth weight [13], and small 
head circumference [14]. Prenatal exposure to other met-
als, such as arsenic (As), thallium (Tl), nickel (Ni), and 
chromium (Cr), has been less extensively studied but was 
also found to be associated with various adverse birth 
outcomes [15–17]. Prenatal assessment of heavy metal 
exposures during pregnancy is challenging and is usually 
conducted by analysis of maternal blood, assuming expo-
sure traces found in it are highly correlated with human 
cord blood levels, as previously shown by Kot et  al. 
(2021) [18] and Li et al. (2018) [19]. The latter examined 
the efficiency of placental transfer of several metals and 
suggested that while Cr and As accumulated in the blood 
cord easily, the accumulation of others including Ni is 
less prominent. Maternal exposure can also be monitored 
by examination of metal traces in urine. Although very 
few studies have examined the correlation between metal 
traces found in maternal urine and cord blood [20], a 
relatively high correlation between metals found in urine 
and maternal blood was reporeted [21]. Thus, Ashrap 
et al. (2021) suggested measuring metals in either urine 
or maternal blood may be an equally good approach to 
evaluate associations with intrauterine exposures [22].

In recent years, many epidemiologic studies have 
examined the associations between heavy metals meas-
ured in maternal urine and various adverse health out-
comes among newborns, including low birth weight [23], 
low birth size [6], and various congenital abnormalities 
[24]. While these findings alone may be associated with 
morbidity in early childhood [25] and adulthood [26], 
they may have resulted from a complicated sequence of 
intrauterine events [27] that could be associated with 
many other future complications, including behavioral 
changes in early childhood [28], obesity during late child-
hood [29] and various endocrine disruptions [30]. Hence, 
it is crucial to investigate any associations between pre-
natal exposure to various heavy metals and measurable 
and sensitive birth outcomes. Until now, most studies 
conducted in this field have focused on populations 
exposed to relatively high levels of heavy metals [31, 32], 

rather than levels similar to the average background of 
exposure, where no exceptional exposures occur.

In the current study, we examine the association 
between prenatal exposure to a mixture of heavy metals 
(as measured in maternal urine) and newborn anthro-
pometric measures. We investigated the concentrations 
of eight heavy metals (As, Cd, Cr, Hg, Ni, Pb, Se, and 
Tl) in maternal urine samples and examined their asso-
ciation with anthropometric measures, both individually 
and by using a modeling approach that accounts for pos-
sible non-linear associations, as well as any interactions 
between the metals [33].

Methods
Study sample
Beginning in 2016, pregnant women and their new-
borns were recruited in delivery rooms of two hospitals 
in Israel: (1) Rambam Medical Center – the largest hos-
pital in the Northern District of Israel, which accounts 
for around 5500 births annually, and (2) Shamir Medical 
Center – located in the Central region of Israel and which 
accounts for around 8000 deliveries annually. Women 
were considered eligible if they were Hebrew-speaking, 
aged 18  years or older, and pregnant with a singleton. 
Exclusion criteria included: (1) preterm birth (< 37 weeks 
of gestational age); (2) pregnancies considered by the 
medical staff to have a high risk of complications (e.g., 
autoimmune diseases, hypertension, diabetes) [34]; (3) 
minor or major congenital malformations as defined by 
the United States Centers for Disease Control and Pre-
vention (CDC) and the European network of population-
based registries for the epidemiological surveillance of 
congenital anomalies (EUROCAT) [35, 36]. A special-
ized study coordinator in each hospital obtained written 
informed consent from each woman before her partici-
pation and completed a questionnaire covering variables 
including sociodemographic characteristics, tobacco 
exposure, health status, pregnancy, and obstetric history. 
A total of 975 mother–newborns pairs were recruited 
from the hospitals: 509 from Rambam Medical Center 
and 466 from Shamir Medical Center. Maternal urine 
samples were collected from all participants on the day of 
delivery, and newborns’ anthropometric measures were 
taken by specialized neonatologists.

Urinary metals and creatinine
Each participant was asked to provide a single urine sam-
ple. The samples were frozen at − 80 °C immediately after 
receiving them and then transported at − 20  °C for fur-
ther analysis at the Central Public Health Laboratory of 
the Israeli Ministry of Health (Abu-Kabir). We measured 
levels of As, Cd, Cr, Hg, Ni, Pb, Se, and Tl using induc-
tively  coupled plasma mass spectrometry (ICP-MS), on 
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an Agilent 7800 × ICP-MS instrument equipped with an 
Integrated Sample Introducing System (ISIS) and High 
Matrix Introducing mode (HMI). The procedure involved 
acid dilution of urine and direct injection into the ICP-
MS instrument, followed by helium dilution in the HMI 
instrument. The method followed standard quality assur-
ance and quality control procedures. Urinary metal 
concentrations were quantified using internal standard 
calibration procedures and certified analytical standards. 
Quality control was performed by analyzing aliquots of 
control material in each series (every ten samples), and 
accuracy was validated by the successful annual partici-
pation in the international proficiency test (G-EQUAS) 
for all parameters. Urine creatinine was measured using a 
well-established colorimetric method at the Central Ter-
atology Laboratory at the Shamir Medical Center. It was 
used to standardize the metal concentration detected in 
the urine samples by a simple adjustment and a covariate 
in statistical models, as previously suggested by O’Brien 
et al. [37, 38].

Newborns’ health and anthropometric measures
As part of a routine physical examination by trained neo-
natologists performed upon all infants following birth, 
birth weight, length, and head circumference were meas-
ured. The data were documented under an anonymized 
number for each mother–child pair. A total of 975 weight 
and head circumference measurements were conducted, 
as well as 887 length measurements. Each measurement 
was repeated three times for reliability, and mean values 
were computed. All results were documented in the new-
borns’ medical records.

Covariates
Using the comprehensive data collected from each 
mother via the questionnaires and data gathered from 
maternal medical registries, we were able to adjust 
our final models to account for possible confounders, 
including maternal age (continuous, in years), newborn’s 
gender, parity (nulliparous vs. multiparous), tobacco 
exposure during pregnancy (yes vs. no), socioeconomic 
status (SES) (standardized score), geographic area and 
creatinine concentration as measured in maternal urine. 
The maternal standardized SES index was individu-
ally calculated by matching maternally reported home 
address zip codes and the geographical distribution of 
SES as reported yearly by the Central Bureau of Statistics 
[39], using a geographical information system (GIS).

As gestational age could function as a mediator affect-
ing the pathway between exposure and outcome [40], and 
therefore potentially lead to over- or under-estimation of 
the true effects [41], this variable was not included in the 
analysis.

Information on cigarette, cigar, or pipe smoking and the 
degree to which women were exposed to environmental 
tobacco smoke during pregnancy was self-reported by 
participants. Women were considered smoke-exposed 
if they reported either being an active smoker or were 
exposed to environmental tobacco smoke for 1 h or more 
per week during at least one-half of their pregnancy.

Statistical analysis
Distributional plots and descriptive statistics were exam-
ined for all variables by the recruitment center (Ram-
bam and Shamir). Mean values and standard deviations 
(SDs) were used to describe continuous variables, and 
independent t-tests were used to compare differences 
between groups. Median values, interquartile ranges 
(IQRs), and Mann–Whitney U tests helped describe and 
compare maternal urinary metal concentrations between 
groups. We used frequencies and chi-square tests to pre-
sent and compare categorical variables between groups. 
All metal concentrations were modeled as natural log-
transformed and standardized for IQR to achieve a 
standard scale and account for the positive skewness 
detected. The mean values of repeated anthropometric 
measurements were calculated and then standardized to 
the mean and SD of the study population.

For further analysis, statistical significance was two-
sided and set at p < 0.05. All statistical processes were 
performed using R (version 4.1.1; R Foundation for Sta-
tistical Computing) and the data.table, ggplot2, dplyr, 
lubridate, and bkmr packages.

Multivariate linear regression
First, we evaluated the associations between exposure 
to individual metals during pregnancy and standard-
ized anthropometric measures using multivariate lin-
ear regression models adjusted for maternal age, parity, 
newborn’s gender, tobacco exposure, SES, geographic 
area and creatinine concentration as measured in mater-
nal urine. The standardized birth weight of newborns 
was also included as an independent variable in models 
that examined the association between exposure with 
birth length and head circumference. First, models were 
adjusted for covariates without considering interactions 
among the metals. Then, two- and three-way interac-
tions of metal concentrations were included in the mod-
els. The results are presented as mean differences in SD 
of anthropometric measures (with 95% confidence inter-
vals, CI) per IQR change in the log-transformed urine 
metal concentrations.

Bayesian kernel machine regression (BKMR)
Alongside the single pollution models, possible effects 
of joint exposures were examined. To examine potential 
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interactions between metals on and their associations 
with the standardized birth weight, length, and head cir-
cumference, Bayesian kernel machine regression (BKMR) 
models were run. This novel non-parametric method 
enables a Bayesian variable selection framework to con-
duct analyses of mixtures without any prior assumption 
of linearity of the associations [33] and has been widely 
used in prenatal exposure studies [42–44]. Each model 
(Eq. 1) accounted for an anthropometric outcome, Yi, an 
independent exposure–response function, h(), as well as 
covariates (Xi) and their corresponding coefficients (β).

In our study, BKMR models were fit using the Markov 
chain Monte Carlo algorithm, with 25,000 iterations 
using the Gaussian kernel [45]. All metals were entered 
into the model as one group, and the posterior inclu-
sion probabilities (PIP) representing the contribution of 
each metal to the overall association were computed and 
reported.

For PIP, a minimal threshold of 0.50 was previously 
suggested [46] to determine whether a single exposure 
is important and has any substantial association with 
the estimates calculated via the models. Dose–response 
relationships were assessed jointly for all metals and indi-
vidually for each metal by fixing other exposure agents 
at their median values. Further exposure–response rela-
tionships between the metals were explored as mean 
changes in the anthropometric measurements were cal-
culated for IQR changes in the log concentration of each 
metal, while the concentrations of the other metals were 
fixed at their 25th, 50th, and 75th percentiles. To further 
examine the possible bivariate metal–response asso-
ciations, we visualized the anthropometric measures as 
functions of two exposures while concentrations of one 
metal change and the second were fixed at their 10th, 50th, 
and 90th percentiles.

Results
Among 975 mother–newborn pairs recruited for the 
study (Table 1), the mean maternal age (SD) was 32.347 
(4.580) years, and the mean (SD) gestational age at deliv-
ery was 39.472 (1.338) weeks; 509 newborns (52.2%) 
were male, and 466 (47.8%) were female. The mean birth 
weight (SD) was 3287.693 (441.475) g, the mean length at 
birth was 49.557 (2.203) cm, and the mean head circum-
ference was 34.611 (1.272) cm. The overall metal con-
centrations, corrected for creatinine (μg/g creatinine), 
detected in maternal urine samples are shown in Table 2. 
Correlations between metals were tested, and Spearman’s 
coefficients are shown in Fig. 1.

(1)
Yi = h ASi,Cdi,Cri,Hgi,Nii,Pbi, Sei,Tli + βXi + ǫi

Multivariate linear regression analysis
The linear regression results are shown in Fig. 2. When 
adjusting for covariates, a 1-IQR increase in log Cr con-
centration [μg/g creatinine] was associated with an 
average decrease of 0.120 SD (95% CI: -0.202 to -0.037; 
P = 0.004) in birth weight, as well as an average decrease 
in birth length of 0.133 SD (95% CI: -0.215 to -0.05; 
P = 0.002). A 1-IQR increase in log Tl concentration 
[μg/g creatinine] was also associated with an average 
decrease in birth weight, of 0.081 SD (95% CI: -0.158 to 
-0.004; P = 0.040). Head circumference was not signifi-
cantly associated with any of the exposures. Neither two-
way nor three-way significant interactions among the 
metals were detected for birth weight, length, and head 
circumference.

BKMR analysis
BKMR was implemented to obtain estimates of the 
joint exposure–response function of all metals exam-
ined in our study. We first examined the overall mixture 

Table 1  Participant sociodemographic, current pregnancy 
characteristics, and newborn’s anthropometric measures

1 n = 975
2 n = 887
3 Mean ± SD
4 n (%)

Characteristic Overall

Maternal Age [years]1,3 32.347 ± 4.580

Parity1,4

  Nulliparous 349 (36%)

  Multiparous 626 (64%)

Tobacco exposure1,4

  No 937 (96.2%)

  Yes 38 (3.9%)

Socioeconomic Status Index1,3 .527 ± .728

Recruitment Center1,4

  Rambam 509 (52.2%)

  Shamir 466 (47.8%)

Gestational age [week]1,3 39.472 ± 1.338

Newborn Gender1,4

  Male 509 (52%)

  Female 466 (48%)

Newborn size for gestational age1,4

  SGA 79 (8.1%)

  AGA​ 833 (85.4%)

  LGA 93 (6.5%)

Newborn weight [gr]1,3 3,287.693 ± 441.475

Newborn length [cm]2,3 49.557 ± 2.203

Head circumference [cm]1,3 34.611 ± 1.272
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dose–response relationship with weight, length, and 
head circumference at birth (Fig. 3). The results suggest 
a negative association for weight and head circumference 
and a U-shaped association for length, yet all credible 

intervals obtained overlapped the null association. Then, 
the association of each creatinine-corrected metal (IQR-
centered log concentrations) in the mixture was exam-
ined with weight, length, and head circumference at birth 

Table 2  Distribution of metal concentrations corrected for creatinine levels (μg/g) as detected in maternal urine samples of 
participants (n = 975)

Abbreviations: As Arsenic, Cd Cadmium, Cr Chromium, Hg Mercury, Ni Nickel, Pb Lead, Se Selenium, Tl Thallium
1 LOQ Limits of quantification [μg/L]
2 AM Arithmetical Mean
3 GM Geometrical Mean

Metal LOQ1 % > LOQ LOQ
√

2
AM2 GM3 25th 50th 75th

As 0.02 99.79 0.01 18.31 9.61 4.82 8.64 17.35

Cd 0.02 66.26 0.01 0.17 0.11 0.05 0.14 0.24

Cr 0.02 89.54 0.01 0.64 0.27 0.17 0.28 0.49

Hg 0.01 85.23 0.01 0.33 0.16 0.08 0.17 0.38

Ni 0.02 91.18 0.01 2.68 1.42 1.15 1.89 3.05

Pb 0.04 69.03 0.03 0.46 0.23 0.12 0.25 0.49

Se 0.10 99.90 0.07 42.19 38.68 30.64 38.35 48.42

Tl 0.02 89.03 0.01 1.66 0.16 0.13 0.18 0.24

Fig. 1  Pairwise Spearman’s correlations matrix for metals concentrations (n = 975) from urine samples of study participants. Using a color spectrum, 
red indicates a positive correlation while blue indicants negative correlations. Only significant correlation (p < .05) coefficients appear in the figure. 
Metal concentrations were corrected for creatinine levels (μg/g), log-transformed, and were IQR standardized
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when all other metals were fixed at their median. Models 
were adjusted for the covariates mentioned above and 
are shown in Fig.  4. The PIP values of the birth weight 
model are shown in Table 3 and were above 0.5 for Cr, Tl, 
and Ni (0.757, 0.618, and 0.646, respectively); the other 
metals had PIPs between 0.30 and 0.49, suggesting the 
probability these metals had any substantial association 
with newborn weight was low, thus should be considered 
as if their influence on the predicted outcome was low. 
Similar to the findings obtained from the linear model of 
birth weight, an inverse association was found between 
Cr and Tl concentrations with birth weight, while Cr 
was the only metal that obtained a 95% credible inter-
val that did not overlap zero. Positive linear associations 
were detected between Hg as well as Ni, Pb, and Se and 
birth weight, while As and Cd were negatively associ-
ated with birth weight. To further investigate possible 
effect modifications by metals, based on the non-linear 
associations detected, we estimated the associations of 
a 1-IQR increase in each metal while the other seven 

metals were fixed at their 25th, 50th, and 75th percentiles 
(Fig. 5). A possible interaction was suggested if the esti-
mates obtained for each metal varied while the concen-
trations of other metals remained unchanged. When 
examining the estimates of birth weight, no significant 
interaction among the metals was detected. For further 
investigation, we visualized two metals interactions plots 
in Figure S1 [see Additional File 1]. We denoted positive 
interactions as interactions in which higher levels of one 
exposure increased the slope of the association between 
the outcome and the other exposure. Hence, a positive 
interaction would attenuate a negative association with 
the outcome but would potentiate a positive association 
with the outcome, and vice versa for negative interac-
tions. As shown in Figure S1 [see Additional File 1], there 
was a suggestion of a positive interaction between As and 
Cr that attenuated the negative associations between the 
metal and birth weight.

Only two PIP values calculated for the metals in the 
length model were higher than 0.50 (Table  3): 0.772 

Fig. 2  Z-standardized anthropometric measures as a function of single log-transformed IQR standardized metal concentrations (creatinine 
corrected). Linear models of weight (n = 975), length (n = 887), and head circumference (n = 975) are adjusted for parity, maternal age, tobacco 
exposure during pregnancy, standardized socioeconomic index, recruitment center, and creatinine levels
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for Cr and 0.524 for Hg. Length at birth appeared to 
be (Fig. 4) a decreasing function of Cr and an increas-
ing function of Hg, yet only Cr function yielded a 95% 
credible interval that did not overlap zero. Further 
analysis (Fig.  5) did not show any susceptibility for 
interactions among the metals. An examination of the 
slopes obtained from the two-metal interaction plots 
(Figure S2 [see Additional File 1]) suggested a negative 
interaction between Cr and both Hg and Ni that poten-
tiate the negative associations between the metals and 
attenuated the positive association between them and 
birth length.

Calculated PIPs for the head circumference model 
(Table  3) were lower than 0.5 for all metals. Although 
visualization of the univariate exposure–response chart 
(Fig. 4) did suggest a negative association of Cr and Tl 
with head circumference, but the credible intervals of 
both functions did overlap zero, suggesting a non-sig-
nificant association. As shown in Fig.  5, the estimates 
obtained from the interaction models for each metal 
remained unchanged, suggesting no significant interac-
tions among the metals. These findings were supported 
by the bivariate metal-response functions (Figure S3 
[see Additional File 1]).

Discussion
Using modeling approaches that account for linear as 
well as non-linear relations, we examined the associa-
tion between eight metals detected in maternal urine at 
delivery and anthropometric measures of the newborns. 
Our findings suggested Cr had the most prominent nega-
tive association with weight and length. An inverse asso-
ciation between Tl and birth length was detected, while 
a positive association between Ni and birth weight was 
suggested.

The combined effect of all metals is shown and sug-
gests a negative association for weight and head circum-
ference and a U-shaped association for length. Although 
the trends can be visualized, the estimates are close to 
zero, and the credible intervals overlap the null asso-
ciation, suggesting the trends are insignificant. The joint 
effects, reflected by the crude trends may be influenced 
by biological and chemical interactions between the met-
als. Thus different associations can mask each other and 
should be further studied among larger sample sizes with 
higher exposure levels.

Our analysis suggested a negative association between 
increasing levels of Cr and a newborn’s weight and 
length. Evidence of negative associations between Tl 

Newborn Weight Newborn Length Head Circumference
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Fig. 3  Joint effect (95% Credible Interval) of the mixtures on weight, length, and head circumference at birth by BKMR. All metals in a particular 
quantile were compared to all metals at their 50th percentile. Models are adjusted for parity, maternal age, tobacco exposure during pregnancy, 
standardized socioeconomic index, recruitment center, and creatinine levels
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and Ni with birth weight and Hg with length was also 
detected. The reduction in birth weight associated with 
increased Cr levels was supported by both the linear and 
BKMR models, as the latter also suggested a positive 
interaction between Cr and both As and Se that attenu-
ated the negative associations between the metal and 
birth weight. These interactions may explain the incon-
sistencies compared with other studies conducted in this 
field. Several studies have reported a possible decrease in 
newborn birth size and weight associated with increasing 
levels of Cr in maternal urine samples at birth [47] and 
during pregnancy [48]. However, other studies did not 
support these findings [49, 50], although none accounted 
for possible associations between the outcomes and mix-
tures of metals. There is increasing evidence to suggest 
that Cr in maternal blood is associated with placental 
insufficiency [51], increasing placental oxidative stress, 
and possible lower birth weight and pregnancy complica-
tions [52]. Besides this indirect mechanism, Saxena et al. 
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Fig. 4  Univariate exposure–response models of anthropometric measures as function selected log-transformed IQR standardized metals 
(creatinine corrected). Weight (n = 975), length (n = 887), and head circumference (n = 975) are Z-standardized. The independently tested metal is 
scaled in each model, while the other metals are fixed at the 50th percentile. The gray area on the charts represents a 95% credible interval. Models 
are adjusted for parity, maternal age, tobacco exposure during pregnancy, standardized socioeconomic index, recruitment center, and creatinine 
levels

Table 3  BKMR Posterior Inclusion Probabilities (PIP) were 
obtained for each metal from models of anthropometric 
measures

Abbreviations: As Arsenic, Cd Cadmium, Cr Chromium, Hg Mercury, Ni Nickel, Pb 
Lead, Se Selenium, Tl Thallium

Metal Newborn Weight Newborn Length Newborn Head 
Circumference

As 0.303 0.174 0.135

Cd 0.350 0.131 0.105

Cr 0.757 0.772 0.198

Hg 0.467 0.524 0.139

Ni 0.646 0.313 0.159

Pb 0.434 0.254 0.136

Se 0.490 0.167 0.104

Tl 0.618 0.101 0.350
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[53] suggest that Cr can cross the placenta, accumulate in 
the fetal tissues, and could directly induce DNA damage 
[54] and affect intrauterine growth [48].

Although Se was non significantly associated with 
birthweight, the proximity of its calculated PIP to 0.5 and 
the possible interaction with Cr could not be neglected. 
Its possible association with the increase in birth weight 

is consistent with a study conducted by Solé-Navais et al. 
(2020) [55]. In their study, increased prenatal levels of 
Se detected in the blood of Norwegian pregnant women 
were found to be significantly and positively associated 
with birth weight. Monangi et  al. (2021) [56] suggested 
that increasing levels of Se in maternal blood were asso-
ciated with longer gestation and hence could contribute 

Fig. 5  The individual exposure contributed to the overall effect of the metal mixture on z-standardized anthropometric measures. Weight 
(n = 975), length (n = 887), and head circumference (n = 975) are Z-standardized, while all metals (creatinine corrected) are log-transformed and IQR 
standardized. Using BKMR models, the individual contribution is indicated by the change in anthropometric estimates when exposure is at the 25th 
compared to the 75th percentile, while all the metals are fixed at either 25th, 50th, or 75th percentile (as indicated by Quantile fixed). The gray area 
on the charts represents a 95% credible interval. Models are adjusted for parity, maternal age, tobacco exposure during pregnancy, standardized 
socioeconomic index, recruitment center, and creatinine levels
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to the increase in birth weight. The mechanism underly-
ing the involvement of Se in gestational duration is not 
fully understood. Still, it could be explained by its role 
in the suppression of mediators involved in the activa-
tion of labor in human fetal membranes and the myome-
trium [57]. The authors of another study [58], suggested 
Se could form chemical bonds, reduce the effect of tera-
togenic metals, and promote fetal growth. In our study, 
high concentrations of Se did appear to attenuate the 
reduction of birth weight associated with Cr. However, 
the mechanisms underlying this possible interaction and 
its association with anthropometric measures are beyond 
the scope of this study and should be further investigated.

Similar to Cr, increasing levels of Tl were significantly 
associated with lower birth weight, as shown in the linear 
models and supported by the BKMR models. These results 
are consistent with the findings of several studies [59–61], 
where Tl was found to be associated with decreased birth 
weight. It was previously suggested that Tl, as with Cr, 
can increase the placental as well as the fetal oxidative 
stress [62] and is thus associated with intrauterine growth 
restriction [63]. Prenatal exposure to Tl has been found to 
be associated with a decrease in maternal and fetal thy-
roid activity [64], which could be directly and indirectly 
related to developmental impairments [30]. However, 
while we found Tl levels were negatively and significantly 
associated with a newborn’s weight, they were not found 
to be associated with length or head circumference.

As shown in Table  S2 [see Additional File 1], com-
pared with other studies conducted in this field, the 
medians of most of the metal/creatinine concentrations 
(μg/g) detected in our study (Table 2) were lower [23, 60, 
65–70], except for Se, which showed higher levels com-
pared with other studies (geometric mean = 38.68  μg/g; 
median = 38.35  μg/g; IQR: 30.64–48.42  μg/g). However, 
this was similar to the amounts detected among pregnant 
women in the US [69] by Kim et  al. (2019); geometric 
mean = 35.4  μg/g (IQR: 18.0–57.4  μg/g). The relatively 
low concentrations of metals detected in urine samples 
from our study population enabled us to examine pos-
sible associations between anthropometric measures at 
birth and prenatal exposure to metals at levels similar to 
the background averages.

Previous studies that examined the association of Ni 
with fetal growth have been inconclusive; however, sev-
eral studies [71, 72] have reported positive associations 
between Ni and fetal development. The positive associ-
ation between Ni concentration and fetal growth could 
be attributed to some of the nutritional benefits of Ni. 
As it has a biological function in metabolic pathways in 
which vitamin B12 is important [73], Ni could poten-
tially affect the stages in fetal growth when consump-
tion of B12 is enhanced [74]. The possible association 

between Ni, weight, and length was also observed by 
Howe et al. (2022) [71] and thus contributed the valid-
ity of our findings.

The association of maternal urine Hg concentrations 
with anthropometric measures of newborns has been 
investigated [58, 66]. While some studies did suggest 
an inverse association between prenatal exposure to 
Hg and anthropometric measurements at birth [75], 
most studies did not offer any significant association 
[58, 66] and were conducted among women exposed 
to median Hg levels five to six-fold higher than those 
observed in our study. In general, Hg levels detected 
in our study were lower than those seen among the US 
population [76] and significantly lower than the upper 
limit suggested [77] for pregnant women by the World 
Health Organization (WHO) (5–7  μg/g creatinine). 
In our study, Increasing levels of Hg were found to be 
positively but non-significantly associated with length. 
Yet, the Hg levels detected among participants in our 
study were low and had a narrow range (IQR = 0.08 
to 0.38  μg/g creatinine) compared with other studies. 
Therefore, the associations with anthropometric meas-
ures should be considered carefully and studied further 
among populations with greater variances.

As Pb and Cd levels exceeded the limit of detection 
(LOD) in less than 70% of participants in our study and 
had a prominently lower range and mean compared 
with other studies [78–80], it is difficult to relate the 
dose–response relationships observed for these metals 
with changes in the anthropometric measures.

Previous literature on the association between As 
exposure and anthropometric measures of the new-
born is relatively limited, and reports have had mixed 
findings: while some failed to reject the null hypothesis 
[81, 82], others reported an inverse association between 
increasing concentrations of As and birth weight [83], 
as well as birth size [84]. In our study, although non-
significant, the association between As concentration 
in maternal urine and newborn weight was inverse and 
consistent with previous studies [30, 83]. As concen-
trations were not found to be associated with head cir-
cumference, similar to previous studies [85, 86]. The PIP 
value calculated for As suggested it did not influence the 
estimates calculated for the outcome. However, the find-
ings in other studies were inconsistent; while Shih et al. 
(2020) [17] reported a positive association, other stud-
ies reported inverse [31, 87, 88] associations between 
As levels in maternal blood or urine and the head cir-
cumference of the newborn. Although we were failed to 
reject the null hypothesis, the inconsistency with previ-
ous studies highlights the need for further research.

None of the metals was found to be significantly associ-
ated with head circumference in any of the models run. 
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Using the BKMR models for head circumference, the 
PIPs detected were less than 0.50 for all metals, and sin-
gle exposure associations appeared insignificant. Vari-
ous associations between metals and head circumference 
were previously shown by Rahman et  al. (2021) [14], 
who examined associations between metals detected 
in maternal erythrocytes and newborn anthropometric 
measures. An infant’s head circumference was previously 
found to be associated with many prenatal and environ-
mental factors, including the newborn’s gender and ges-
tational age [89] and maternal nutrition [90]. However, 
it is predominantly determined by inheritance [90] and 
pathways involving many genes and transcription factors 
[91]; therefore alternations in head circumference char-
acterize many genetic disorders [92, 93] and have been 
extensively studied. As many of the metals included in 
this study were previously found to act as genetic modifi-
ers [94–96], suppressing or enhancing fetal expression of 
genes, it is not unreasonable to assume that interactions 
between these metals themselves [57], or with proteins 
[97], including transcription factors, could lead to vari-
ous alterations in newborns’ phenotypes. Recent studies 
have suggested that metals could also interact with epige-
netic processes that may be crucial to intrauterine devel-
opment [98], especially in the context of metal mixtures. 
Investigating the biochemical mechanisms that contrib-
ute to genomic–metal interactions should be a key area 
for future research and might require the collection of 
samples such as placental tissue and cord blood.

The current study had several strengths: the large sam-
ple size, the examination of multiple metals, the use of 
classic as well as advanced mixture modeling analysis, and 
the heterogeneous population recruited from two differ-
ent geographical areas and hospitals. However, there were 
also several limitations. Since maternal education and 
income data was not collected, individual zip code-based 
SES was used. As our study included only term newborns, 
any association between prenatal maternal exposure to 
metals and preterm deliveries could not be examined 
[56, 78, 87]. The metal concentrations observed in our 
study were relatively low; this enabled us to examine the 
possible effect of daily exposures. On the other hand, it 
limited the scope of outcomes associated with high con-
centrations and wide variances. Although metals could be 
measured in urine and were corrected to maternal hydra-
tion condition, they had a variety of half-lives, with some 
concentrations reflecting exposure that had occurred in 
the past few days (e.g., As, Ni, Pb, Se, and Tl), and others 
reflecting exposures over past weeks and months (e.g., Cd, 
Cr, and Hg) [99–102]. Thus, our findings cannot reflect 
any association between duration and prenatal timing of 
exposure with any of the anthropometric measures. It is 
worth mentioning that metals measured in urine did not 

reflect the existence of many possible potent forms in the 
human body, e.g., methyl-Hg [103], selenomethionine 
[104], and lead–protein complexes [105].

Conclusion
Using a large sample size and multi-metal mixture data, 
we delineated a potential association between prena-
tal maternal exposure to heavy metals and newborns’ 
weight, length, and head circumference. Our findings 
suggested that Cr was the most influential metal in pre-
dicting weight and length, as it was also negatively asso-
ciated with both. An inverse association between Tl and 
birth length was detected, while a positive association 
between Ni and birth weight was suggested. Although 
some findings were not consistent with those of other 
studies, the levels of heavy metals observed in our study 
were relatively low, with low variances. Hence some asso-
ciations detected might be spurious and should be fur-
ther investigated in future epidemiologic studies as well 
as in vitro and in vivo biochemical studies.
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