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Abstract 

Background Prescribed fires often have ecological benefits, but their environmental health risks have been infre‑
quently studied. We investigated associations between residing near a prescribed fire, wildfire smoke exposure, 
and heart failure (HF) patients’ hospital utilization.

Methods We used electronic health records from January 2014 to December 2016 in a North Carolina hospital‑based 
cohort to determine HF diagnoses, primary residence, and hospital utilization. Using a cross‑sectional study design, 
we associated the prescribed fire occurrences within 1, 2, and 5 km of the patients’ primary residence with the num‑
ber of hospital visits and 7‑ and 30‑day readmissions. To compare prescribed fire associations with those observed 
for wildfire smoke, we also associated zip code‑level smoke density data designed to capture wildfire smoke emis‑
sions with hospital utilization amongst HF patients. Quasi‑Poisson regression models were used for the number 
of hospital visits, while zero‑inflated Poisson regression models were used for readmissions. All models were adjusted 
for age, sex, race, and neighborhood socioeconomic status and included an offset for follow‑up time. The results are 
the percent change and the 95% confidence interval (CI).

Results Associations between prescribed fire occurrences and hospital visits were generally null, with the few 
associations observed being with prescribed fires within 5 and 2 km of the primary residence in the negative direc‑
tion but not the more restrictive 1 km radius. However, exposure to medium or heavy smoke (primarily from wildfires) 
at the zip code level was associated with both 7‑day (8.5% increase; 95% CI = 1.5%, 16.0%) and 30‑day readmissions 
(5.4%; 95% CI = 2.3%, 8.5%), and to a lesser degree, hospital visits (1.5%; 95% CI: 0.0%, 3.0%) matching previous studies.

Conclusions Area‑level smoke exposure driven by wildfires is positively associated with hospital utilization 
but not proximity to prescribed fires.
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Background
Climate change is projected to increase wildfire occur-
rence and severity [1–3]. One consequence of increased 
wildfire activity is a decline in air quality, primarily from 
smoke. Wildfire smoke is a complex mixture with fine 
particulate matter  (PM2.5) as a primary pollutant [4–6], 
and exposure to  PM2.5 is associated with increased mor-
bidity and mortality [7–9]. Conversely, reducing air pol-
lution, and  PM2.5 specifically, can lower morbidity and 
mortality, particularly related to cardiovascular disease 
[10–15]. Critical reviews of the health effects of wildfire 
smoke exposure provided evidence of consistent positive 
associations between wildfire smoke exposure and res-
piratory morbidity and all-cause mortality [2, 16].

Prescribed fires can be used to try and reduce the size, 
frequency, and severity of wildfires [17–19], a practice 
that is increasing [20]. Prescribed fires may also have 
ecological benefits like natural hazards regulation, polli-
nation, and pest and disease control [21] that can moti-
vate their usage in communities. However, prescribed 
fires also release smoke into the atmosphere, though in 
much smaller quantities than wildfires, primarily due to 
their smaller size [22]. Despite the smaller size of pre-
scribed fires than wildfires, a study of two states in the 
southeastern United States (Florida and Georgia) found 
that prescribed fires were a primary source of air pollu-
tion and explained up to 50% of the variability in daily 
PM 2.5 concentrations [23]. Prescribed fires may also 
have a disproportionate impact on socially vulnerable 
populations in the United States [24, 25], presenting a 
possible environmental justice issue. Although health 
effects from prescribed fire smoke are potentially a con-
cern for vulnerable populations, there is a lack of studies 
investigating the associations between health effects and 
repeated prescribed fire exposures in clinically vulnerable 
individuals.

Heart failure is one of the most severe cardiovascu-
lar diseases. An estimated 6.0 million individuals in the 
US ≥ 20 years old have heart failure, which is projected to 
increase to 8.0 million individuals by 2030, partially due 
to an aging population [26, 27]. People with heart fail-
ure are at higher risk of health complications associated 
with air pollution than the general population [28, 29]. 
Previous studies have, in particular, shown elevated risks 
of readmissions and hospital visits among HF patients 
exposed to elevated concentrations of  PM2.5 [30] and 
ozone [31]. In a study in the southeastern United States, 
associations between air pollution and hospitalization 
among HF patients were stronger than those with other 
cardiovascular diseases, highlighting the unique vulner-
ability of HF patients to air pollution exposure [31].

This study aims to evaluate the health effects associated 
with prescribed fire occurrences and smoke exposure 

from wildfires among heart failure (HF) patients. We 
used the Environmental Protection Agency Clinical and 
Archived Records Research for Environmental Studies 
(EPA CARES) for this study.

Methods
Study cohort
EPA CARES is an electronic health record (EHR) 
resource that merges EHRs from the University of 
North Carolina Healthcare System with environmental 
exposures [30, 32, 33]. The EPA CARES resource has 
previously been used to study HF patients’ environmen-
tal health risks [30, 32, 33] but has not been used before 
to examine the potential impacts of proximity to pre-
scribed fires or exposure to wildfire smoke. HF patients 
in the EPA CARES resource had a recorded HF diagno-
sis at a hospital or clinic affiliated with the University of 
North Carolina Healthcare System (UNCHCS) between 
July 1, 2004, and December 31, 2016. The study cohort 
for this analysis was restricted to patient observations 
recorded between January 1, 2014, and December 
31, 2016, as the prescribed fire data covered only this 
period. As in previous analyses, HF was defined accord-
ing to the International Classification of Diseases, Ninth 
Revision (ICD-9) codes 428.x and the International 
Classification of Diseases, Tenth Revision (ICD-10) 
codes I50.x [32] based on diagnoses recorded in the 
electronic health record. Individuals were then linked to 
demographics, address history, hospital and state death 
records, and hospital visits data (including inpatient, 
outpatient, and emergency room visits) as recorded 
in their EHR. We focused on hospital utilization inde-
pendent of cause as this is the broadest possible cap-
ture of hospital visits, admissions, and readmissions. 
While the vast majority of these will be for HF, given the 
severity of the disease, air pollution exposure has broad 
impacts on multiple organ systems and thus may con-
tribute to a variety of hospitalizations – including those 
outside of the commonly studied cardiovascular and 
pulmonary domains. Additionally, the EHR data did not 
specifically detail primary and/or secondary reasons for 
visits which can make it difficult to conclusively deter-
mine a reason, particularly in a patient population with 
a high prevalence of co-morbidities such as HF patients. 
Smoking status was missing from 6.3% of the cohort, 
thus it was not included in the models. However, a 
sensitivity analysis was performed where smoking sta-
tus was imputed using multiple imputation chained 
equations as implemented in the mice package in R as 
done in previous analyses of this patient data [30, 33]. 
Addresses were considered successfully geocoded at the 
zip code level, and 99.9% of addresses met this criterion 
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[32]. As with previous studies using the EPA CARES 
resource, we restricted the study to participants who 
resided in North Carolina.

Prescribed fire data
Prescribed fire locations and areas used in this study are 
based on U.S. EPA’s 2014–2016 version 7 air emissions 
modeling platforms (2014v7.1 [34], 2015v7.1 [35], and 
2016v7.2 [36]). The platforms’ fire data was derived from 
fire emissions inventory tools and national, state, and 
tribal agencies databases, including the National Oce-
anic and Atmospheric Administration’s Hazard Mapping 
System, the Monitoring Trends in Burn Severity (MTBS) 
fire products, and fire data compiled by the North Caro-
lina Department of Environmental Quality. The Satellite 
Mapping Automated Reanalysis Tool for Fire Incident 
Reconciliation version 2 (SMARTFIRE2) was used to rec-
oncile these multiple sources of space-borne and ground-
based fire information into daily geolocated fires and 
areas burned.

Prescribed fires have been shown to generate elevated 
air pollution  (PM2.5) concentrations up to 9 km from 
their location, with the highest concentrations occurring 
within ~ 500m [37], and the impacted area around a pre-
scribed fire can vary based on location and other condi-
tions [25]. The prescribed fire data for this study did not 
include estimates of  PM2.5 generated, thus based on previ-
ous studies, we linked participants with all prescribed fires 
that occurred within 5 km of their primary residence as 
determined by their EHRs. Address changes were dated, 
allowing us to follow individuals over time even when they 
changed residences. For our exposures, we examined the 
number of prescribed fire occurrences within 5 km, 2 km, 
and 1 km of the patients’ primary residence as this was 
likely to capture both local (1 & 2 km) and broad area-level 
(5 km) effects of prescribed fires. While some studies have 
noted that elevated  PM2.5 can be detected beyond 5km of 
a prescribed fire, this would only be associated with larger, 
less frequent prescribed fires which are also less likely to 
occur near populated areas. Given the size of most pre-
scribed fires, we considered a 5 km cutoff a reasonable 
maximum distance for this analysis. As stated before, our 
exposure metric for prescribed fires was the number of 
prescribed fires within each radius, as we did not have 
access to measured or modeled estimates of air pollution 
from the prescribed fires. Thus, while our exposure is a 
proxy for air pollution due to the prescribed fire, it may 
also capture the ecological effects of prescribed fires that 
currently have unknown health effects, if any.

Smoke density
We also examined smoke density data (which is primarily 
generated by wildfires) separate from the prescribed fire 

data. We did this to compare health effects from resid-
ing near the occurrence of prescribed fires (which has 
not been evaluated for associations with hospital visits 
or readmissions) to those from wildfire smoke exposure 
which has been repeatedly associated with hospitaliza-
tions [38–40]. Daily smoke density data from January 
2014 to December 2016 were acquired from the National 
Oceanic and Atmospheric Administration’s Hazard Map-
ping System (NOAA HMS) [41], which was designed 
to capture wildfire smoke. Smoke exposure days were 
assigned to individuals based on their zip code tabula-
tion area (ZCTA) of residence. Population centroids 
within the US Census ZCTAs were intersected with HMS 
data to obtain smoke densities at the ZCTA level. HMS 
smoke density is derived from a combination of obser-
vations from the Geostationary Operational Environ-
mental Satellites (GOES) and polar satellites. The HMS 
smoke product (HMS Smoke) combines data from sat-
ellite observations and NOAA expert image analysts to 
define potential light, medium, and heavy smoke plumes, 
representing appropriate smoke concentrations between 
0–10, 10–21, and 21–32 µg/m3 respectively. HMS smoke 
density data is designed to detect large area smoke from 
wildfires and not prescribed fire smoke, although some 
prescribed fire smoke may be captured within the data.

Statistical analysis
We used a cross-sectional study design to assess repeated 
exposure to common events which have been understud-
ied for prescribed fires and wildfire smoke exposure – 
as opposed to the short-term impacts as might be done 
using a case-crossover approach. We did not have enough 
data for a longer-term prospective analysis. The out-
comes considered were total hospital visits and 7-day and 
30-day readmissions, with x-day readmissions defined as 
an inpatient admission occurring within x days of dis-
charge from a prior inpatient hospitalization identical 
to previous definitions used [30, 33]. Total hospital visits 
included outpatient as well as inpatient and emergency 
room visits, and thus broadly capture hospital utilization 
which follows previous publications [30, 33]. Associa-
tions with hospital visits and readmissions were modeled 
using quasi-Poisson regression (hospital visits) and zero-
inflated Poisson regression (readmissions) models.

We utilized an identical confounder adjustment for 
total hospital visits and readmissions. We used demo-
graphic data from the hospital records and socioeco-
nomic data from the 2010 US Census Data to adjust for 
age at HF diagnosis, sex, race, and the following 2010 
census block group variables: percent urban, percent of 
households below the federal poverty line, percent of 
individuals with a high school education or more, per-
cent unemployed, median household value, and percent 
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of individuals on public assistance. Confounders were 
chosen a priori based on previous analysis of air quality 
and hospitalizations examining this patient cohort [30, 
33]. To improve convergence, all continuous confound-
ers were standardized to have a zero mean and a standard 
deviation of one. Socioeconomic data were taken from 
the US census as this data, e.g., income or poverty status, 
is not recorded within the electronic health record. While 
insurance status is occasionally extracted from EHRs as 
a proxy for individual-level socioeconomic status, the 
older age of our cohort meant that most individuals used 
Medicare as their primary insurer, substantially decreas-
ing insurance as a proxy for socioeconomic status in this 
data. All models included an offset of log-transformed 
follow-up time which accounted for not all study par-
ticipants being in the study for the entire 3-year period 
(some study participants were diagnosed with HF after 
Jan 1, 2014, and others died before the study ended).

Only a minority of patients have a readmission causing 
an excess of 0s in the readmission distribution compared 
to what would be expected in a Poisson distribution. 
Thus, as stated before, we utilized a zero-inflated Poisson 
model, as implemented in the pscl R package [42, 43], 
to model the outcome. The confounder adjustment for 
the zero-inflated Poisson model remained the same as 
detailed above (including the log follow-up time offset), 
and the excess zeroes were modeled using an intercept-
only model identical to the modeling approach taken in 
previous analyses of readmissions in this cohort [30]. 
As previously mentioned, our prescribed fire exposures 
were the number of prescribed fire occurrences within 
1 km, 2 km, and 5 km of a patient’s primary address. For 
smoke density data, exposures were the number of total 
smoke days and the number of light, medium, heavy, and 
medium or heavy smoke days to capture smoke concen-
tration-dependent health effects. We combined medium 
and heavy smoke days, given the relative rarity of each of 
them. Each exposure was evaluated in a separate model. 
We removed patients with Tukey outliers for total visits 
using the interquartile range (IQR) score (third quar-
tile + 1.5*IQR) as done for previous analyses [32]. There 
were no lower limit Tukey outliers as that value was 
negative, and one cannot have negative visits or readmis-
sions. Also, as done in previous analyses of this cohort, 
we removed outliers for 7- and 30-day readmissions 
by examining the distribution of the readmissions and 
decided to consider 7-day readmission observations > 4 
and 30-day readmission observations > 7 as outliers 
(Figs. S-1 and S-2).

We conducted several sensitivity analyses for this 
study. To examine sensitivity to geocoding precision, we 
ran analyses restricted to individuals with street-level 
geocoding. We examined associations after restricting 

to individuals with age ≤ 100, limiting age recording 
errors. We imputed missing smoking status data using 
multiple-imputation chained equations implemented in 
the mice package in R and pooled the five imputations 
to obtain an overall estimate [44]. For the imputation 
analyses, we performed five imputations of the data and 
then pooled the imputations and used the confounder 
adjustment described previously. We also examined 
associations without outliers removed to examine their 
influence on the observed associations. We also evalu-
ated  PM2.5 on the day of the prescribed fire as a second-
ary outcome using the same confounder adjustment 
model as before and using daily  PM2.5 models validated 
for the study area and utilized in previous analyses of 
this study population [30, 33]. Finally, we examined 
associations after restricting to patients with only one 
recorded address over the study to limit potential expo-
sure misclassification related to errors such as incor-
rect recording of dates of address changes. Results from 
all analyses are presented as the percent change in the 
number of hospital admissions or readmissions and 
associated 95% confidence interval (CI).

Results
The study population was comprised of 8,495 partici-
pants. Participants were aged 20–116 at the time of 
their HF diagnosis (mean age 70.9 ± 14.2  years). Table  1 
shows the clinical covariates for these study participants. 
The study population was primarily white (63.5%) and 
roughly equivalent for sex (female 51%). Over 60% lived 
in urban areas, while 70.5% were within 5 km of at least 
one prescribed fire, 20.2% were within 2  km, and 5.5% 
were within 1 km of a prescribed fire.

Geographic distribution of prescribed fires and smoke 
density
Most prescribed fires in North Carolina are conducted 
in the south-central area of the state, which coincides 
with the presence of large military bases, as well as in the 
western and eastern regions (Fig. 1).

Military bases perform prescribed fires for several rea-
sons, including reducing the risk of wildfires caused by 
artillery and range training [45, 46]. While a high num-
ber of fires are concentrated in a few distinct ZCTAs, the 
number of smoke days across the state based on smoke 
data from HMS varies significantly (Fig. 2).

Most light smoke days occurred in the south-central 
part of North Carolina and the state’s western and east-
ern regions (Fig.  2). The spatial distribution of total 
smoke days is similar to light smoke days since 90% of 
smoke days were from light smoke. Medium smoke days 
were primarily distributed in the northern and west-
ern regions of the state, while the heaviest smoke days 
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occurred in the southeast and west. In the summer of 
2016, drought conditions led to a very active fall fire sea-
son in western North Carolina and neighboring states 
[47]. These wildfires likely account for the high number 
of medium and heavy smoke days in western ZCTAs. The 
smoke data from HMS revealed 23,243 zip-smoke days 
between 2014–2016 in North Carolina.

The total number of prescribed fires recorded in the 
state during this period was 5,840. Only 575 prescribed 
fires (9.8%) occurred on the same date and zip code as a 
smoke day (light, medium, or heavy) recorded in HMS 
(Fig. 3). This suggests that prescribed fires rarely (if ever) 

generate sufficient smoke to be captured by HMS, as the 
low frequency of co-occurrence could be random chance. 
The lack of intersection between smoke days recorded 
in HMS and prescribed fire occurrence reflects both the 
design of HMS (which uses satellites with a resolution 
ranging from 375m to 2km) and the small size of pre-
scribed fires (median acres burned = 34).

Associations with prescribed fires
For prescribed fire occurrences, we observed inverse 
associations with total hospital visits for an additional 
prescribed fire within 5 km (2.6% decrease per addi-
tional prescribed fire; 95% CI = -4.1%, -1.1%) and within 
2 km (6.0% decrease per additional prescribed fire; 95% 
CI = -10.4%, -1.6; Table  2). For prescribed fires within 
1 km, the association was still negative in direction but 
with a wide confidence interval fully encompassing the 
null. There was no association between proximity to pre-
scribed fires and 7-day readmissions and at best weak evi-
dence for a positive association between prescribed fires 
within 5 km and 30-day readmissions (3.2% increase per 
additional prescribed fire; 95% CI = -0.4%, 7.1%; Table 2).

Associations with prescribed fires were generally 
unchanged under the sensitivity analyses described in 
the Methods. The main exception was when includ-
ing observations initially identified as outliers and when 
restricting to patients who did not move during the study 
period. Under these sensitivity analyses, the direction of 
association with 30-day readmissions was reversed for 
all prescribed fire radii examined (Table S-1), but this 
effect was not consistently observed across outcomes. As 
mentioned in the Methods we also examine associations 
between the selected outcomes and  PM2.5 on the day of 
each prescribed fire. These models only included  PM2.5 
as the exposure. For total visits the association between 
a 1 ug/m3 increase in  PM2.5 was 0.5% (95% CI = 0.2, 0.8), 
the association with 7-day readmissions was -1.55% (95% 
CI = -3.0, -0.1), and the association with 30-day readmis-
sions was -0.1% (95% CI = -0.8, 0.6). However, these asso-
ciations account for only a part of the complete  PM2.5 
data available (that which intersects with the 2014–2016 
study time period). For a more complete and prospective 
analysis of associations between  PM2.5 and these out-
comes which covers a longer time period with a larger 
sample size please see our previously published works on 
this  PM2.5 exposure and hospital utilization among indi-
viduals with HF [30, 33].

Smoke exposure
As described in the Methods, smoke presence data 
from the NOAA HMS system was employed as a met-
ric to capture smoke exposure from larger fires, gener-
ally wildfires. The strongest associations with smoke 

Table 1 Study cohort description including prescribed fire 
occurrence, smoke exposure, total visits, and readmissions for 
study participants

Units for measurement for continuous variables are in parentheses

SD Standard deviation, IQR Interquartile range

Covariates, N = 8,495 Mean SD IQR
Age (y) 70.9 14.2 62.0—82.0

Urbanicity (%) 61.9 42 10.1—100.0

Poverty (%) 17.3 14.6 6.5—24.4

High school or more education 
(%)

85 11.6 78.2 – 94.2

Unemployed (%) 10.2 7.5 5.1 – 13.6

Median household value ($) 185 972 106 814 109 900 – 230 600

Public assistance (%) 1.9 3 0.0 – 2.8

N %
White 5398 63.5

Black 2420 28.5

Other 677 8

Male 4166 49

Female 4329 51

Within 1 km of a prescribed fire 469 5.5

Within 2 km of a prescribed fire 1715 20.2

Within 5 km of a prescribed fire 5992 70.5

Prescribed Fire and Smoke Day Statistics 2014–2016
Median Mean Max

Prescribed fires within 1 km 0 0.06 5

Prescribed fires within 2 km 0 0.3 7

Prescribed fires within 5 km 1 1.9 13

Light smoke days 32 36.2 168

Medium smoke days 2 2.4 14

Heavy smoke days 1 1.2 10

Medium + heavy smoke days 3 3.6 20

Total smoke days 35 37.8 188

Hospital Visits and Readmissions Statistics
Median Mean Max

Total hospital visits 5 8.3 37

7‑day readmissions 0 0.1 4

30‑day readmissions 0 0.4 7
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days were observed for 30-day readmissions. There was 
a 0.6% (95% CI = 0.3%, 0.9%) increase in 30-day readmis-
sions with each additional smoke day. For light smoke 
days, the association was 0.5% (95% CI = 0.2%, 0.9%), and 
for medium smoke days, the association was 6.5% (95% 
CI = 2.3%, 10.8%) increase in 30-day readmission. Heavy 
smoke days had the largest magnitude of any associations 
examined, with a 17.8% increase in 30-day readmissions 

per additional heavy smoke day (95% CI = 5.8%, 31.2%). 
When combining medium and heavy smoke days, we 
observed associations that mirrored those observed for 
medium smoke days alone, with a 5.4% (95% CI = 2.3%, 
8.5%) increase in 30-day readmissions per additional 
medium or heavy smoke day (Table 3).

In contrast to 30-day readmissions, associations were 
weaker for 7-day readmissions, where the primary 

Fig. 1 Prescribed fires in North Carolina between 2014–2016. Map shows the number of prescribed fires in North Carolina between 2014–2016 
by ZCTA. Fires outside any ZCTA were assigned to the nearest ZCTA code. Due to the large number of prescribed fires in the Fort Bragg military base 
(776, 13.2%) they were excluded from this figure

Fig. 2 Number of smoke days in North Carolina between 2014–2016. Maps show total, low, medium, and heavy smoke days based on the HMS 
Smoke product between 2014–2016 by ZIP code tabulation area (ZCTA)
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associations observed were with total smoke days (0.9% 
increase per additional smoke day; 95% CI = 0.2%, 
1.6%) and medium or heavy smoke days (8.5% increase 
per additional medium or heavy smoke day; 95% 
CI = 1.5%, 16.0%). Neither medium nor heavy smoke 
days showed the same strength of association as the 
combined category (Table  3). For total hospital visits, 
there was evidence of a positive association for heavy 
smoke days (5.4% increase per additional heavy smoke 
day; 95% CI = -0.4%, 11.4%) and medium smoke days 
(1.7% increase per additional medium smoke day; 95% 
CI = -0.2%, 3.6%). The combined medium or heavy 
smoke days mirrored associations with medium smoke 
days for total visits; no association was seen for light 
smoke days or total smoke days (Table 3).

In a broad range of sensitivity analyses, associations 
between smoke days and 30-day readmissions were sta-
ble for medium or heavy smoke days and total smoke 
days (Table S-2). For other exposures, associations with 
30-day readmissions were reduced for individuals who 

did not move, and associations with heavy smoke days 
were attenuated when restricted to patients less than 100 
years old, causing the removal of 29 individuals listed 
age > 100 at the time of HF diagnosis. As associations 
with total hospital visits and 7-day readmissions were 
weaker than those observed for 30-day readmissions, 
we are more cautious not to over-interpret associations 
seen in isolated sensitivity analyses. For 7-day readmis-
sions, associations with total smoke days and combined 
medium or heavy smoke days were stable in all sensitiv-
ity analyses except for attenuated associations observed 
with outliers retained. Associations with light smoke days 
and medium smoke days were strengthened when imput-
ing smoking status, and associations with medium smoke 
days increased when restricted to patients less than 100 
years old. For total visits, sensitivity analyses consistently 
showed weak to no associations. The exception was when 
not removing outliers, where associations were observed 
for heavy smoke days and medium or heavy smoke days 
(Table S-2). However, given the weak initial associations 
and the limited number of outliers, these associations are 
less likely to be reproducible.

Discussion
Study findings show a negative or no association between 
hospital utilization and prescribed fire exposures. What 
associations were observed for prescribed fires were only 
seen for the larger radii, e.g., fires within 2 and 5 km of a 
primary residence, but not for those within 1 km of the 
primary residence, and not for all outcomes examained. 
The limited associations with prescribed fires, not seen 
for the most proximal exposures, were also in the opposite 
direction of what would be expected. This could be driven 
by factors correlated with prescribed fire occurrence out-
side of smoke exposure, such as ecological changes or cor-
related land management practices which we lacked the 
data to explore. In contrast, smoke exposure related to 

Fig. 3 Matching prescribed fire and smoke days in NC 2014–2016. Map of the number of prescribed fires in each ZCTA the same day as a smoke 
day recorded by the HMS product

Table 2 Models for prescribed fire associations with hospital 
visits and readmissions

CI Confidence interval

Outcome Exposure Associated 
Change in 
Outcome (%)

95% CI (%)

Total hospital visits Fire counts (1 km) ‑5.8 ‑15.3, 4.2

Total hospital visits Fire counts (2 km) ‑6.0 ‑10.4, ‑1.6

Total hospital visits Fire counts (5 km) ‑2.6 ‑4.1, ‑1.1

7‑day readmissions Fire counts (1 km) ‑2.1 ‑35.7, 49.0

7‑day readmissions Fire counts (2 km) ‑7.9 ‑26.9, 16.3

7‑day readmissions Fire counts (5 km) ‑1.8 ‑8.4, 5.5

30‑day readmissions Fire counts (1 km) 5.5 ‑15.4, 31.7

30‑day readmissions Fire counts (2 km) ‑2.6 ‑13.6, 9.8

30‑day readmissions Fire counts (5 km) 3.2 ‑0.4, 7.1
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wildfires was positively associated with 30-day readmis-
sions and, to a lesser degree, total hospital visits and 7-day 
readmissions. Additionally, we observed a concentration-
dependent response, with heavier smoke days being more 
strongly associated with 30-day readmissions. Examining 
these associations among HF patients lends a unique but 
essential view, as HF patients are a particularly vulner-
able subset of the community with elevated environmen-
tal health risks [31, 32, 48]. Additionally, HF prevalence is 
growing in the United States due to the aging of the pop-
ulation and the increase in HF risk factors [26, 49]. This 
makes studies of HF patients of particular public health 
importance as we seek to understand the unique environ-
mental health risks faced by the most vulnerable commu-
nity members.

Our observation of an association between smoke 
exposure and an increase in hospital readmissions indi-
cates that long-term smoke exposure is a health risk to 
HF patients (Table  3). Though this result is expected, 
given the elevated environmental sensitivity of HF 
patients and the known links between smoke exposure 
and health, it is still important to quantify these health 
effects for HF patients and compare them with other 
published associations. A study of smoke exposure in 
the Western U.S. found that exposure to wildfire-specific 
 PM2.5 (> 37 µg/m3) for at least two consecutive days was 
associated with a 7.2% increase in respiratory admissions 
among Medicare beneficiaries [50]. This association is 
comparable to the associations observed in this study for 
medium and medium + heavy smoke days (Table 3). The 
smoke exposures in our study likely come from a com-
bination of local wildfires and long-range transport. The 

NOAA HMS system does not allow for tracking where 
the smoke originated from. However, previous studies 
have highlighted that smoke exposure is associated with 
increased readmission and mortality risks even when 
transported over long distances [51].

Despite the widespread usage of prescribed fires, few 
studies have examined prescribed fires’ health impacts. 
One study showed that prescribed fires are associated 
with increased emergency room visits in asthma patients 
[52]. A 2021 study estimated that prescribed fire burning 
in Georgia increased the annual average  PM2.5 by 0.9 µg/
m3 in 2016. By linking modeled  PM2.5 with established 
concentration–response functions, researchers showed 
that  PM2.5 from prescribed fires would be projected to 
increase emergency department visits and mortality [25]. 
In our study, prescribed fire occurrences were not associ-
ated with increased hospital visits or readmissions among 
HF patients (Table  2). The associations were generally 
inverse, not observed for the most proximal prescribed 
fires (those within 1 km), and not robust in sensitivity 
analyses. While this study did not specifically examine 
estimates of smoke or  PM2.5 from prescribed fires, it is 
the first to examine prescribed fire occurrence frequency 
in association with health outcomes in the community 
using both individual-level health and residential data 
and precise estimates of prescribed fire dates and loca-
tion. This study is also the first to examine prescribed fire 
health effects in individuals with cardiovascular disease 
who have increased environmental health risks. Previ-
ous studies of prescribed fires using individual-level data 
have focused on occupational exposures experienced 
by firefighters, which would differ substantially from 

Table 3 Models of association between varying levels of smoke exposure and hospital visits and readmissions

CI Confidence interval

Outcome Exposure Associated Change in Outcome (%) 95% CI (%)

Total hospital visits Light smoke days 0.0 ‑0.2, 0.2

Total hospital visits Medium smoke days 1.7 ‑0.2, 3.6

Total hospital visits Heavy smoke days 5.4 ‑0.4, 11.4

Total hospital visits Med + heavy smoke days 1.5 0.0, 3.0

Total hospital visits Total smoke days 0.1 ‑0.1, 0.2

7‑day readmissions Light smoke days 0.4 ‑0.2, 1.5

7‑day readmissions Medium smoke days 8.1 ‑1.5, 18.5

7‑day readmissions Heavy smoke days 21.4 ‑7.0, 58.3

7‑day readmissions Med + heavy smoke days 8.5 1.5, 16.0

7‑day readmissions Total smoke days 0.9 0.2, 1.6

30‑day readmissions Light smoke days 0.5 0.2, 0.9

30‑day readmissions Medium smoke days 6.5 2.3, 10.8

30‑day readmissions Heavy smoke days 17.8 5.8, 31.2

30‑day readmissions Med + heavy smoke days 5.4 2.3, 8.5

30‑day readmissions Total smoke days 0.6 0.3, 0.9



Page 9 of 11Raab et al. Environmental Health           (2023) 22:86  

community exposures [53–55]. These studies, involv-
ing much greater exposure than the larger community 
would experience, showed increased inflammation and 
decreased lung function in association with occupational 
exposures to prescribed fires.

Given the advanced age (mean age equal to 70 years) 
and overall modest size of our study population, we did 
not stratify by age to investigate increased vulnerabil-
ity for older individuals. Future research should address 
the overlapping areas of vulnerability (age, socioeco-
nomic, clinical) which may heighten health risks related 
to smoke exposure. A study examining geographic and 
social vulnerabilities observed increased vulnerability 
among women and black participants [56]. However, this 
study did not examine clinical vulnerabilities, leaving this 
question unaddressed.

A limitation of this study is that it uses a cross-sectional 
approach which was necessitated by the limited period of 
exposure data. While the cross-sectional design allowed 
us to use all available exposure data to determine the 
spatial patterning of prescribed fire occurrence it comes 
with the limitation that some prescribed fires would have 
occurred after the hospital visits and hospitalizations for 
some individuals. This tradeoff between prospectively 
assessed outcomes (e.g., outcome strictly follows expo-
sure in time) versus improved exposure assessment is 
often at the core of cross-sectional designs and is why 
cross-sectional designs cannot exclude reverse causa-
tion, making casual interpretations of results difficult. 
Thus, the generalizability of this study in part hinges on 
the spatial patterning of prescribed fires being relatively 
constant over time in North Carolina. Future studies 
with more extensive exposure and outcome data should 
seek to apply study designs robust to reverse causation. 
Despite this limitation this study does focus on a popula-
tion highly sensitive to poor air quality and utilizes EHRs 
to capture all hospital visits, and both 7 and 30-day read-
missions giving a broad picture of hospital utilization in 
association with prescribed fire occurrences and smoke 
exposure.

Another limitation of this study is that we only used a 
single hospital system with limited capture of individual-
level socioeconomic status. The lack of individual-level 
socioeconomic status variables (e.g., income) is a fac-
tor faced by all EHR studies. As done here, it is typically 
addressed by incorporating area-level socioeconomic sta-
tus indicators. Using a single hospital system might limit 
generalizability to a broader population. However, this 
and previous studies based on this patient population 
have shown concordance with patient populations across 
the U.S., suggesting the results may generalize beyond a 
single hospital system [30, 32, 33].

Another limitation is that we did not have direct meas-
ures of smoke emitted by prescribed fires. While the pollu-
tion concentration increases with proximity to prescribed 
fires, the occurrence of prescribed fires is only a proxy for 
pollution exposure and potential longer-term ecological 
benefits. Future studies should incorporate more direct 
measurements of smoke exposure, possibly using mobile 
monitoring at both residences and near the prescribed 
fires to accurately assess the emitted pollutants. Never-
theless, we believe that the occurrence of prescribed fires 
nearby to the primary residence is a critical exposure met-
ric with the potential to inform both community members 
and policymakers in charge of prescribed fire programs on 
the potential health impacts of this land management tool.

Conclusions
In conclusion, we observed substantial health effects 
from smoke exposure associated with wildfires among 
HF patients. Similar associations were not observed for 
local prescribed fire occurrences, suggesting that pre-
scribed fires, as implemented during the study time 
frame, may not contribute to health effects among HF 
patients in the same manner as wildfire smoke exposure. 
Future studies should continue to explore smoke-related 
health risks in vulnerable populations while examining 
prescribed fire programs for evidence of health effects.
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