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Abstract 

Background  Western Montana, USA, experiences complex air pollution patterns with predominant exposure sources 
from summer wildfire smoke and winter wood smoke. In addition, climate change related temperatures events are 
becoming more extreme and expected to contribute to increases in hospital admissions for a range of health out-
comes. Evaluating while accounting for these exposures (air pollution and temperature) that often occur simultane-
ously and may act synergistically on health is becoming more important.

Methods  We explored short-term exposure to air pollution on children’s respiratory health outcomes 
and how extreme temperature or seasonal period modify the risk of air pollution-associated healthcare events. The 
main outcome measure included individual-based address located respiratory-related healthcare visits for three cat-
egories: asthma, lower respiratory tract infections (LRTI), and upper respiratory tract infections (URTI) across western 
Montana for ages 0–17 from 2017–2020. We used a time-stratified, case-crossover analysis with distributed lag models 
to identify sensitive exposure windows of fine particulate matter (PM2.5) lagged from 0 (same-day) to 14 prior-days 
modified by temperature or season.

Results  For asthma, increases of 1 µg/m3 in PM2.5 exposure 7–13 days prior a healthcare visit date was associated 
with increased odds that were magnified during median to colder temperatures and winter periods. For LRTIs, 1 µg/
m3 increases during 12 days of cumulative PM2.5 with peak exposure periods between 6–12 days before healthcare 
visit date was associated with elevated LRTI events, also heightened in median to colder temperatures but no sea-
sonal effect was observed. For URTIs, 1 unit increases during 13 days of cumulative PM2.5 with peak exposure peri-
ods between 4–10 days prior event date was associated with greater risk for URTIs visits that were intensified dur-
ing median to hotter temperatures and spring to summer periods.

Conclusions  Delayed, short-term exposure increases of PM2.5 were associated with elevated odds of all three 
pediatric respiratory healthcare visit categories in a sparsely population area of the inter-Rocky Mountains, USA. PM2.5 
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Background
Less than 1% of the world experiences daily concentra-
tions of fine particulate matter air pollution (< 2.5 µm in 
aerodynamic diameter; PM2.5) that is less than the rec-
ommended daily safe levels of less than a daily concentra-
tion average of 15 µg / m3 [97]. The daily safe thresholds 
and related policies have been set based on rigorously 
designed epidemiological cohort and time series studies 
(e.g., [69, 70, 88]), confirmed through rigorous re-analysis 
and subsequent studies over the last several decades [6, 
44, 45]. PM2.5 affects many health outcomes, but of inter-
est in this study, the role of PM2.5 in respiratory health 
is well known for a range of conditions, including upper 
respiratory tract infections (URTI; e.g., croup; [21], lar-
yngitis; [14], influenza; [62], COVID-19; [41], lower res-
piratory tract infections (LRTI; e.g., bronchitis; [46], 
bronchiolitis; [40], pneumonia; [63]), and chronic disor-
ders (e.g., chronic obstructive pulmonary disease; [78], 
asthma,[32], lung cancer,[23]. Associative impact studies 
overwhelmingly corroborate a correlative link between 
respiratory health outcomes and exposure to air pol-
lutants (e.g., [42, 54, 84]), as well as delayed exposures 
through both short-term (i.e., same day to 1 month,e.g., 
[28, 93, 96]) or long-term timeframes (greater than 
1  month,e.g., [49, 67]). Inhaling PM2.5 can produce 
inflammation and oxidation stress, triggering cellular 
damage and increasing the risk of respiratory disease 
[10].

Ambient PM2.5 air pollution, particularly in urban and 
higher-income country settings, has been significantly 
reduced over the last 40 years [26, 61]. However, in many 
areas of the world, and specifically for our rural and 
intermountain study setting of Montana, USA, exposure 
to PM2.5 continues to increase due to residential wood 
combustion for heat in the winter season and wildfire 
smoke events during the summer (or wildfire) season. 
In the 2022 State of the Air report [5], Montana received 
failing grades for eight counties based on the number of 
unhealthy and hazardous air-quality days due to severe 
wildfires and use of residential wood stoves. Regarding 
wood stoves, Montana ranks second in the USA in the 
proportion of households that heat with wood fuel (7.4% 
compared to 1.7% in the USA; [85]. Chemical Mass Bal-
ance source apportionment studies have shown that 

residential wood stoves are the largest source of ambient 
PM2.5 during the winter months (55.5–82%; [86]). Studies 
evaluating the health impacts associated with residential 
sources of PM2.5 are limited and often suffer from chal-
lenges related to sparse populations and uncertain gener-
alizability [64, 77].

The second air quality threat in the mountain west 
region is smoke from nearby and distant wildfires. Wild-
fire-specific PM2.5 sources are projected to worsen with 
climate change [26, 65] with no discrimination for juris-
dictions and threatening to reverse decades of policy 
for clean air standards. A growing body of literature is 
focused on the health effects of PM2.5 specifically derived 
from wildfire smoke. Health impacts from wildfire 
smoke exposures range from irritation of the eyes and 
respiratory tract to respiratory morbidity, with growing 
evidence supporting an association with all-cause mor-
tality [75]. In particular, hospitalizations and emergency 
department visits related to respiratory infections and 
preexisting conditions, such as asthma and COPD, are 
consistently elevated during and shortly following wild-
fire events [12, 75]. Several factors complicate the evalua-
tion of wildfire exposures and healthcare usage on health 
outcomes. These include uncertainty in lag effects and 
potential non-linear response curves that may indicate 
lower healthcare utilization during extremely high wild-
fire smoke events, perhaps mediated through behavior 
changes that are not at play in urban settings where the 
moderately elevated PM2.5 exposures are less recogniz-
able or notable by community members [31].

In parallel, global exposure to extreme tempera-
tures has grown and is expected to worsen with cli-
mate change. Extreme temperature events, both cold 
and hot, are known to be associated with excess mor-
tality and increased hospital admissions for a range 
of health outcomes [17, 30]. Hotter days in the sum-
mer will cause increased levels of illness and death by 
compromising the body’s ability to regulate its tem-
perature, or by exacerbating health problems. Cold 
temperatures in the winter can cause blood vessels to 
constrict, heightening cardiovascular issues, and irri-
tating the airways triggering respiratory problems and 
lowering immunity. Specifically focusing on the respir-
atory-related health categories in this study, literature 

in colder temperatures tended to increase instances of asthma and LRTIs, while PM2.5 during hotter periods increased 
URTIs.
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for temperature-associated respiratory health effects 
are mixed with respect to hot versus cold temperature 
extremes and depending on the respiratory catego-
ries studied. For example, it is well known that cold 
(and dry) conditions can increase the survival rate of 
influenza viruses and enhance viral spread (e.g., [55]). 
A review concluded that both extreme heat and cold 
could significantly increase the risk of asthma [34], and  
higher temperatures have been observed to  worsen 
dyspnea, while colder temperature may trigger cough 
and phlegm symptoms among COPD patients [76].

Multiple rigorous studies observed impacts on health 
of PM2.5 and temperature, but have considered increases 
in these exposures separately; however, these exposures 
often occur simultaneously and may act synergistically 
on health. Differential PM2.5 sources across the seasons 
(i.e., wood stove and industrial emissions in the winter 
versus wildfire smoke in the summer) compounded with 
extreme temperature exposures could differentially affect 
health outcomes. The potential for interactive effects 
based on these two climate-relevant factors is important 
as current population risk estimates and corresponding 
policy recommendations are based largely on epidemio-
logical studies quantifying the effects of PM2.5 and tem-
perature considered in isolation. A systematic review 
of several studies, almost entirely in urban populations, 
indicate sufficient findings of moderate quality to sup-
port synergistic effects for temperature and air pollu-
tion [4], although such evidence for pediatric respiratory 
outcomes is extremely limited [92]. Assessment of these 
questions in rural communities also is limited, but a 
recent case crossover study in California for all age cardi-
orespiratory hospitalization showed strong evidence for 
a synergistic effect between wildfire specific PM2.5 and 
extreme heat [13].

For the study presented here, we evaluated associations 
between short-term or delayed fine particulate matter 
(PM2.5) on three children’s respiratory health outcomes 
assessed at the individual level. We additionally assessed 
modification of these associations by temperature and 
season. We focused on a rural and sparsely populated 
service area in western Montana, USA, from 2017–2020. 
This area of the inter-Rocky Mountains is experiencing 
more frequent exceedance of daily air quality standards 
in the summer due to increases in wildfire smoke events 
with the largest source of ambient PM2.5 in the winter 
due to residential wood stoves.

Methods
All analyses were performed with R software (version 
4.2; R Development Core Team) including the ‘lme4’ [7], 
‘Tidyverse’ [90], and ‘biostat3’ [82] packages.

Study area, population, and respiratory health outcomes
The study protocol was approved by the Institutional 
Review Board (IRB) at the University of Montana. Initial 
study approval was obtained by the University of Mon-
tana-Missoula Institutional Review Board on 6 July 2021 
(#97–21). Health data were previously collected adminis-
trative data; thus, informed consent requirements did not 
apply.

Study area: For our study, we are focused on western 
Montana, USA (Fig. 1). The study area covers 45 out of 
361 Montana Zip Code Tabulation Areas (ZCTA) across 
8 of the 56 counties (Deer Lodge, Granite, Lake, Min-
eral, Missoula, Powell, Ravalli, and Sanders). The total 
population within this area was approximately 233,657 in 
2020 that includes one small city (Missoula, population 
total = 73,948) surrounded by sparsely populated areas 
(US Census Bureau 2020). According to the US Census 
Bureau’s definition of rurality, this study area is defined as 
having 72.3% of the population living in rural areas. For 
context, the US has 19.3% of the population living in rural 
areas [74]. This region of the inter-Rocky Mountains is 
experiencing more frequent exceedance of daily air qual-
ity standards in the summer months (particularly in 
July–September [49],) due to increases in wildfire smoke 

Fig. 1  Study area population. 45 ZCTAs in western Montana included 
in study area symbolized by percent total population. Hospital 
location (ZCTA = 59804) represented by red circle
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events. The largest source of ambient PM2.5 in the winter 
is due to residential wood stoves [86]. At this northern 
hemisphere latitude (45–49oN), Montana experiences 
more winter cold months (3.4 on average) than summer 
warm months (2.8 on average) [27]. Annual average tem-
peratures, including daily minimums, maximums, and 
averages, have risen across Montana,between 1950 and 
2015, with increases ranging from 1.1–1.7  °C [89]. Both 
wildfire smoke events and extreme temperature condi-
tions are expected to become more common through the 
twenty-first century.

Hospital data: Individual healthcare data at the 
address-level were collected from 1 December 2017–1 
March 2020 for one hospital that predominantly serves 
the Missoula Valley (Fig. 1) in western Montana, United 
States, with 10,133 respiratory-related records. These 
data included nine sources of admissions type: clinic, 
inpatient, emergency, observation, outreach clinic, pread-
mission outpatient clinic, professional services, provider 
clinic, and telemedicine clinic. Data included individu-
als aged 0–17 with a respiratory-coded infection (see 
Case definitions for health outcomes below and Table 1). 
A strictly protected health protocol was implemented 
through data use agreements between the records pro-
vider and the University of Montana, where personal 
identifiers were removed, and residential addresses were 
geocoded and geomasked. The individual-level data and 
corresponding spatiotemporal daily PM2.5 exposure val-
ues were used in case-crossover analyses (see Case-cross-
over design and analysis).

Case definitions for health outcomes: For this study, 
cases related to, asthma, lower respiratory tract infec-
tions (LRTI), and upper respiratory tract infections 
(URTI) were first identified using the International 
Classification of Diseases,10th Revision, Clinical Modi-
fication diagnosis codes (ICD-10-CM) and sorted fol-
lowing the case definitions of the Armed Forces Health 
Surveillance Center (AFHSC 2015) (Table  1). We fur-
ther identified and split case definitions based on 

each infection’s upper and lower airway occurrences. 
Records were classified by condition when a related 
diagnosis code of interest was found in the primary 
diagnosis field (first-listed) or any secondary diagnosis 
field (1–8). Records were selected once for each associ-
ated category. For example, records with more than one 
URTI code were only counted once for the URTI cate-
gory. If a record had codes for URTI, LRTI, and asthma, 
the record was counted once in each of the three cate-
gories. Healthcare data in the study period and area are 
shown as total counts for each respiratory category in 
Fig. 2, along with average weekly PM2.5.

Explanatory variables of interest (see Table 2)

PM2.5 exposure assessment
The daily time-series dataset of PM2.5 surface con-
centrations was previously developed, and details are 
reported elsewhere [79]. Briefly, these data were pro-
duced from air quality station observations, satellite 
data, and meteorological data to produce daily 1-km 
resolution surface PM2.5 concentration estimates to 
explore health outcome impacts of PM2.5 across spa-
tiotemporal domains specific to the rural and inter-
mountain western USA. We extracted the daily PM2.5 
measurements for each case event address location on 
date of healthcare visit for the case-crossover design, 
along with PM2.5 at that same individual address loca-
tion for the reference days (see Case-crossover design 
and analysis). Delayed PM2.5 exposure effects were 
then considered through a distributed lag model (DLM) 
described in more detail in the following Statistical 
Modeling section. In addition, we aggregated the 1-km 
PM2.5 values to the Zip Code-level to explore how pop-
ulation-based / Zip Code-level extractions for each 
case–control pairings compared in modeled results to 
individual-based / address-level extracted PM2.5 values.

Table 1  Case definitions for respiratory infections. ICD-10-CM diagnosis codes for upper respiratory tract infections (URTI), lower 
respiratory tract infections (LRTI), and asthma

URTI J00, J01, J01.0, J01.00, J01.01, J01.1, J01.10, J01.11, J01.2, J01.20, J01.21, J01.3, J01.30, J01.31, J01.4, J01.40, J01.41, J01.8, J01.80, J01.81, J01.9, 
J01.90, J01.91, J02.0, J02.8, J02.9, J03.00, J03.01, J03.80, J03.9, J03.90, J03.91, J04, J04.0, J04.1, J04.10, J04.11, J04.2, J04.3, J04.30, J04.31, J05, J05.0, 
J05.1, J05.10, J05.11, J06, J06.0, J06.9, J09.X2, J09.X3, J09.X9, J10, J10.0, J10.00, J10.01, J10.08, J10.1, J10.2, J10.8, J10.81, J10.82, J10.83, J10.89, J11, 
J11.0, J11.00, J11.08, J11.1, J11.2, J11.8, J11.81, J11.82, J11.83, J11.89, J21.0, J21.8, J21.9, H65, H66, H66.9

LRTI J20, J20.0, J20.1, J20.2, J20.3, J20.4, J20.5, J20.6, J20.7, J20.8, J20.9, J21, J21.0, J21.1, J21.8, J21.9, J09.X1, J09.X2, A37, A37.00, A22.1, A37.01, A37.10, 
A37.11, A37.80, A37.81, A37.90, A37.91, A48.1, B25.0, J12, J12.0, J12.1, J12.2, J12.3, J12.8, J12.81, J12.82, J12.89, J12.9, J13, J14, J15, J15.0, J15.01, 
J15.1, J15.2, J15.20, J15.21, J15.211, J15.212, J15.29, J15.3, J15.4, J15.5, J15.6, J15.7, J15.8, J15.9, J16, J16.0, J16.8, J17, J18, J18.0, J18.1, J18.2, J18.8, 
J18.9, J18, J21, J20.9, R05.1, R05.2

Asthma J44.0, J44.1, J44.9, J45, J45.2, J45.20, J45.21, J45.22, J45.3, J45.30, J45.31, J45.32, J45.4, J45.40, J45.41, J45.42, J45.5, J45.50, J45.51, J45.52, J45.9, 
J45.90, J45.901, J45.902, J45.909, J45.99, J45.990, J45.991
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Temperature
Temperature is a well-established climate variable 
that can be correlated with the exposure of interest 
and also possibly certain respiratory health outcomes 
of interest to this study (e.g., viral infections such as 
influenza; [55]). We included daily maximum tem-
perature modeled by gridMET [1] extracted to each 
individual location, date of healthcare visit, and corre-
sponding reference days for the case-crossover model. 
Temperature was considered a continuous variable in 
the analysis,however, we used the 15th, 50th, and 85th 
percentiles of temperature (cutoffs for colder = -0.7 0C, 
median = 6.2 0C, and hotter = 20.7 0C) to summarize the 
estimated marginal effects for the interaction of PM2.5 

and temperature on the three respiratory outcomes. In 
addition, we examined the delayed effects of a tempera-
ture adjustment from lag day 0 to 6 (i.e., day of case to 
6 days prior) where each temperature lag was evaluated 
in a separate model.

Season
In Montana, PM2.5 levels spike during summer season 
due to the primary source of wildfire smoke and during 
the winter season due to the primary source of wood 
smoke [86]. We therefore included a categorical sea-
son predictor that is assumed to be associated with the 
exposure of interest and potentially also associated with 
the respiratory health outcomes of interest. We included 

Fig. 2  Respiratory healthcare events and PM2.5. Related healthcare visits for asthma (dotted line), lower respiratory tract infections (LRTI–
dashed line), and upper respiratory tract infections (URTI–solid line), by week, for western Montana residents, aged 0–17. Average PM2.5, shown 
in dot-dashed line for the entire study area, for comparison

Table 2  Explanatory Variable Descriptions. A summary of variables used in modeling is provided. Interactions between these variables 
were also considered

Variable Measure Description and Usage Reference

PM2.5 Daily 1-km gridded surface PM2.5 estimates were the primary exposure of interest. We extracted PM2.5 values at each case 
event address on date of visit, all 14 days prior to the date of case event for investigating short-term exposure effects, 
and referent days for the case-cross over design (details provided in text)

[79]

Temperature Daily 4-km gridded gridMET data were used to extract surface maximum temperature at each case event address on date 
of visit and corresponding referent days

[1]

Season At each case event day and corresponding referent days, a categorical variable to indicate the season was used for summer 
(June–Aug), fall (Sep–Nov), winter (Dec–Feb), and spring (Mar–May)

-
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a northern hemisphere season as a categorical variable 
that included summer (June–August), fall (September–
November), winter (December–February), and spring 
(March–May). The modeling described next employed a 
multiplicative interaction between PM2.5 and season to 
estimate the effect of this relationship on the three res-
piratory outcomes.

Statistical modeling
Case‑crossover design and datasets
We evaluated the synergistic effect of season and temper-
ature extremes with PM2.5 predictors on the risk of each 
respiratory infection outcome (asthma, LRTI, or URTI) 
using a time-stratified case-crossover design widely used 
in studies of short-term environmental health exposures 
(e.g., [80, 87]). Introduced in environmental health stud-
ies by Maclure [59], case-crossover designs compare an 
individual’s (case) exposure immediately prior to or dur-
ing the defining case event with that same individual’s 
exposure at different reference (or control) times. This 
method is attractive because it compares individuals 
with themselves and controls for time-invariant con-
founders (age, sex, race, socioeconomic status, and other 
short timeframe changing health behaviors) and secular 
trends (long term time trends in exposure or response) 
by design [57]. Since the seminal Maclure [59] study, 
several variations on choosing control days to minimize 
biases have emerged, and convergence to a time-stratified 
case-crossover design has evolved as the recommended 
approach for minimizing sources of bias [95]. Thus, we 
created case-crossover datasets for the 3 respiratory out-
comes with paired case events and either 3 or 4 controls. 
The case event day was defined as the date of healthcare 
encounter. We then identified matched control days as 
the same weekdays from other weeks of the same month 
and year in the same geocoded location of residence 
(i.e., of the same person). We selected control days both 
before and after the case day to minimize bias from long-
term time trends in temperature and PM2.5 [11, 52].

Distributed lag modeling
Next, we used distributed lag models (DLM) on the case-
crossover datasets. DLMs are a class of models that are 
used to simultaneously test for lagged measures of expo-
sure (here, PM2.5) on an outcome (e.g., [29]. In a DLM, an 
outcome is regressed on repeated measures of exposures 
over a proceeding time period. Thus, DLMs were used to 
determine the sensitive windows of PM2.5 exposure on 
risk of respiratory healthcare encounter. These models 
used a 14-day lagged length for PM2.5 concentration as 
the exposure variable and main effect variable. This main 
effect time-lagged variable was then interacted with tem-
perature and season.

To identify sensitive windows within the 14-days of 
PM2.5 exposure and test the effects of short-term PM2.5 
effects on respiratory health, we investigated how a 
change of 1 µg / m3 in PM2.5 for all k days from k = 0 to 
14  days prior to the case (and control) event day. We 
included 3 variations of the PM2.5 lag distribution within 
the DLM model: (i) Single day – A 1  µg / m3 in PM2.5 
temporary change in a single lagged day. The single day 
PM2.5 lags included the value on the kth day previous to 
the case event (e.g., a single day lag 3 corresponds to the 
PM2.5 value that occurred 3 days before the case/control 
day). (ii) Cumulative days – Cumulative days of PM2.5 
included the accumulation of PM2.5 for all k days prior 
to the case event day (e.g., a cumulative lag 0–14 would 
include the sum of all 14  days prior to the case/control 
day), and (iii) Weekly average – Weekly average PM2.5 
lags included rolling averages of PM2.5 over 1-week peri-
ods prior to the case event, including the average PM2.5 
value for 0–6, 1–7, …, 8–14 days prior.

For each respiratory binary response (asthma, LRTI, 
or URTI) and corresponding case-crossover dataset, 
we applied a conditional logistic model to estimate the 
odds ratios for the cumulative effect or the expected dif-
ference in the respiratory outcome that is association 
with a simultaneous 1  µg/m3 unit increase in PM2.5 at 
each time point. Given that our modeling also included 
interactions, the marginal representation of the cumu-
lative effect requires that we fix the values of the other 
interacting variables. For temperature, we summarized 
across the 15th, 50th, and 85th percentiles of tempera-
ture (colder, median, and hotter, respectively). For sea-
son, we summarized across fall, winter, spring, and 
summer. Modification of the effects of PM2.5 on each res-
piratory health outcome by temperature or season was 
assessed by including multiplicative interaction terms 
for PM2.5-temperature or PM2.5-season. The three-way 
interaction terms for PM2.5-temperature-season were not 
included due to model instability (low sample sizes). To 
account for the effects of temperature or season, appro-
priate linear combinations of coefficients were utilized 
using the ‘biostat3’ R package [82].

Results
In summary, we analyzed respiratory healthcare visit 
data for a sparsely populated region in western Mon-
tana, USA. During the study period (1 December 2017 
– 1 March 2020), we observed 10,133 respiratory vis-
its among 8,128 unique patients, including 794 asthma, 
638 LRTI, and 8,392 URTI. Figure 2 illustrates the weekly 
case counts and seasonal patterns across the time period 
studied. Modeled daily PM2.5 concentrations within our 
study area and period ranged from 0.45 to 40.40 µg / m3. 
Summary statistical values for the year 2018 and 2019, 
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respectively, were mean = 4.52 and 3.15, SD = 5.506 and 
2.443, median = 2.87 and 2.72, and interquartile range 
(IQR) = 3.12 and 2.22  µg / m3. Approximately 209 of 
821  days exceeded the daily average standard of 15  µg 
/ m3 (the current WHO 24-h average standard; [88]) in 
this study area with 26  days in summer, 58  days in fall, 
103  days in winter, and 22  days in spring. Notably, 8 of 
the highest days that exceeded the United States Envi-
ronmental Protection Agency 24-h standard of 35  µg / 
m3 occurred during August 2018 when a prolonged air 
pollution event was experienced in the area due to smoke 
transport from extensive wildfire activity in the western 
US and Canada.

In what follows, we report the odds ratios for mod-
eled results of each respiratory outcome (asthma, LRTI, 
URTI). We note upfront that our exploratory model runs 
that aggregated the 1-km PM2.5 values to the Zip Code-
level produced significantly smaller effect sizes than 
what is presented here in the results for the individual-
level extracted PM2.5 values (Supplementary Fig.  1). In 
addition, model comparisons between delayed effects of 
only temperature did not vary across temperature’s time-
lagged days 0 to 6 (Supplementary Fig. 2), and the lag day 
0 for temperature are present in the results as follows. 
Finally, PM2.5 single day time lagged models were not as 
consistent as cumulative days and average weekly days, 
and to ease the viewing of all model combinations, the 
single day PM2.5 time-lagged models are presented in the 
Additional File 1.

Asthma
All results for the risk of asthma healthcare visits asso-
ciated with each 1 µg / m3 change in PM2.5 modified by 
temperature or season can be found in Table 3A, Fig. 3, 
and Supplementary Fig.  3, 4 and 5. For the main effect 
of PM2.5, we observed positive associations with asthma 
healthcare events at weekly average 7–13  days before 
date of healthcare visit [OR = 1.92, 95% CI: (1.20–3.06); 
Supplementary Fig. 3]. These associations were elevated 
in colder temperatures [OR = 3.23, 95% CI: (1.45–7.18)], 
followed by median temperatures [OR = 2.52, 95% CI: 
(1.39–4.55)], but no association was observed with PM2.5 
modified by hotter temperatures (Supplementary Fig. 4). 
Accumulated PM2.5 (0–13 days) also pointed to increased 
asthma risk in colder to median temperatures (Table 3A, 
Fig.  3B). Finally, in the winter season and during the 
same lag of 7–13 days prior to an event (Supplementary 
Fig. 5), a 1 µg / m3 increase in PM2.5 was associated with 
increased odds of these delayed asthma healthcare events 
[OR = 3.26, 95% CI: (1.07–9.95)]. Notably, one of the only 
significant single day time-lagged runs was observed 
in the winter season during elevated PM2.5 levels 9 days 
prior an asthma event [OR = 3.08, 95% CI: (1.18–8.04); 

Supplementary Fig.  5]. No significant PM2.5 effects on 
asthma during hotter temperatures or other seasons 
(spring, summer, or fall) were observed.

LRTI
All results for the risk of children’s LRTI healthcare visits 
associated with each 1 µg / m3 change in PM2.5 modified 
by temperature or season can be found in Table 3B, Fig. 4, 
and Supplementary Fig. 6, 7 and 8. LRTI had the lowest 
sample size of the respiratory health outcome categories 
studied here (n = 638), resulting in unstable odds esti-
mates for some modeled groups. However, of the LRTI 
models that had the larger sample sizes (> 100), the PM2.5 
only model was associated with elevated LRTI healthcare 
events after an increase of 12 days of accumulating PM2.5 
[OR = 2.42, 95% CI: (1.13–5.20); Fig.  4A] with a peak 
exposure period at an average 6–12 days prior to health-
care visit date [OR = 2.36, 95% CI: (1.28–4.32); Table 3B, 
Supplementary Fig.  6]. In colder and median tempera-
tures during an increase in PM2.5 within the same average 
6–12 day lag, LRTI healthcare encounters also increased 
[for colder OR = 2.52, 95% CI: (1.23–6.48), for median 
OR = 2.55, 95% CI: (1.35–4.81); Supplementary Fig.  7]. 
Likewise, in median temperatures and after an increase 
of 12  days of accumulating PM2.5, LRTI events also 
increased [OR = 2.33, 95% CI: (1.05–3.89); Fig.  4B). No 
significant PM2.5 effects on LRTI during hotter tempera-
tures or seasons were observed (Fig. 4C, Supplementary 
Fig. 8).

URTI
All results for the risk of children’s URTI healthcare 
events associated with each 1  µg / m3 change in PM2.5 
modified by temperature or season can be found in 
Table  3C, Fig.  5, and Supplementary Fig.  9, 10 and 11. 
For the main effect PM2.5 only model, increased odds for 
URTI healthcare events were observed beyond 6 cumu-
lative days of PM2.5 with the highest exposure occurring 
in 13 cumulative days prior visits [OR = 1.37, 95% CI: 
(1.12–1.65); Fig.  5A] and peak exposure observed dur-
ing the average window of 4–10 days prior to healthcare 
visit [OR = 1.32, 95% CI: (1.12–1.55); Supplementary 
Fig. 9). The higher frequency of URTI outcomes, relative 
to asthma and LRTI outcomes, allowed for consistent 
findings of interactive effects by temperature and season 
and indicated that PM2.5 effects were present in hotter 
rather than colder conditions (Table 3C, Fig. 5B, Supple-
mentary Fig. 10). At cumulative lag (0–13 days), summer 
and spring periods yielded the highest PM2.5 associations 
with increased odds of URTI healthcare events (for sum-
mer OR = 3.35, 95% CI: (1.85–6.04), for spring OR = 3.06, 
95% CI: (1.89–4.95); Table 3C, Fig. 5C).
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Discussion
We found that delayed short-term increases in PM2.5 air 
pollution were positively associated with children’s res-
piratory related healthcare visits and events for a patient 
population in western Montana, USA. These effects 
were found for categories of respiratory related visits of 
asthma (peak effect at lag of 7–13 days), LRTI (peak effect 
after 12 accumulated days), and URTI (peak effect after 

13 accumulated days). These links between increased 
respiratory risk and increased short-term PM2.5 are well 
established and consistent with past findings. While, in 
general, consistency of findings implies an association 
between increased respiratory risk and increased PM2.5, 
some discrepancies between these studies are worth 
mentioning, including differences in reported observed 
length of the lag effect and size of effects (discussed more 

Table 3  Modification of the effect of PM2.5 exposure on respiratory health by temperature or season. The odds ratios and 
corresponding 95% confidence intervals (CI) with P-values to estimate the increase in risk of healthcare encounter for each 1 µg/m3 
increase in PM2.5 at the given lagged cumulative days or weekly average for each temperature/season combination and 3 respiratory 
outcomes: (A) asthma, (B) lower respiratory tract infections (LRTI), and (C) upper respiratory tract infections (URTI). For each respiratory 
condition, the 3 exposure models are presented for PM2.5, PM2.5-Temperature (grouped by Colder, Median, and Hotter for display), and 
PM2.5-Season (grouped by Fall, Winter, Spring, and Summer). A single critical window was chosen to display based on the main PM2.5 
effect model’s largest odds ratio value. For all lagged windows, see Figs. 3, 4 and 5 and Supplementary Figs. 3, 4, 5, 6, 7, 8, 9, 10 and 11. 
In addition, bolded values indicate an odds ratio with 95% CI that occurred above the baseline risk of 1.0. n was the sample size for 
model and group where available, noting that temperature was interacted as a continuous variable and doesn’t define groups

* unstable estimates with n < 100

(A) Asthma

  Model Group Cumulative Days Weekly Average n

Lag Odds Ratio (CI) P-val Lag Odds Ratio (CI) P-val

    PM2.5 – 0–13 1.50 (0.87–2.59) 0.140 7–13 1.92 (1.20–3.06) 0.006 794

    PM2.5
      -
    Temp

Colder 0–13 2.51 (1.07–5.82) 0.038 7–13 3.23 (1.45–7.18) 0.004 –

Median 0–13 2.03 (1.05–3.89) 0.033 7–13 2.52 (1.39–4.55) 0.002 –

Hotter 0–13 1.30 (0.69–2.42) 0.406 7–13 1.49 (0.86–2.58) 0.153 –

    PM2.5
      -
    Season

Fall 0–13 0.66 (0.24–1.78) 0.412 7–13 1.45 (0.57–3.64) 0.426 191

Winter 0–13 1.28 (0.29–5.76) 0.744 7–13 3.26 (1.07–9.95) 0.038 247

Spring 0–13 1.25 (0.26–5.88) 0.772 7–13 1.29 (0.33–4.97) 0.709 190

Summer 0–13 2.00 (0.67–5.94) 0.214 7–13 1.57 (0.60–4.06) 0.357 166

(B) LRTI
  Model Group Cumulative Days Weekly Average n

Lag Odds Ratio (CI) P-val Lag Odds Ratio (CI) P-val

    PM2.5 – 0–12 2.42 (1.13–5.20) 0.022 6–12 2.36 (1.28–4.32) 0.006 638

    PM2.5
      -
    Temp

Colder 0–12 2.09 (0.81–5.32) 0.123 6–12 2.82 (1.23–6.48) 0.014 –

Median 0–12 2.33 (1.06–5.12) 0.034 6–12 2.55 (1.35–4.81) 0.004 –

Hotter 0–12 2.94 (0.91–9.50) 0.070 6–12 2.06 (0.72–5.82) 0.175 –

    PM2.5
      -
    Season

Fall 0–12 1.46 (0.18–11.4) 0.716 6–12 3.02 (0.52–17.4) 0.218 61*

Winter 0–12 1.36 (0.36–5.09) 0.646 6–12 1.49 (0.60–3.68) 0.389 374

Spring 0–12 1.65 (0.27–9.81) 0.579 6–12 3.74 (0.87–16.1) 0.076 169

Summer 0–12 1.89 (0.06–63.6) 0.723 6–12 0.05 (0.00–3.56) 0.172 34*

(C) URTI
  Model Group Cumulative Days Weekly Average n

Lag Odds Ratio (CI) P-val Lag Odds Ratio (CI) P-val

    PM2.5 – 0–13 1.37 (1.12–1.65) 0.001 4–10 1.32 (1.12–1.55)  < 0.001 8,392

    PM2.5
      -
    Temp

Colder 0–13 1.10 (0.86–1.40) 0.435 4–10 1.22 (0.98–1.52) 0.075 –

Median 0–13 1.30 (1.06–1.59) 0.010 4–10 1.27 (1.07–1.50) 0.005 –

Hotter 0–13 1.84 (1.41–2.41)  < 0.001 4–10 1.38 (1.08–1.77) 0.009 –

    PM2.5
      -
    Season

Fall 0–13 0.69 (0.46–1.00) 0.053 4–10 0.85 (0.59–1.19) 0.345 1,266

Winter 0–13 1.22 (0.86–1.74) 0.259 4–10 1.10 (0.84–1.44) 0.467 4,224

Spring 0–13 3.06 (1.89–4.95)  < 0.001 4–10 3.28 (2.18–4.91)  < 0.001 2,254

Summer 0–13 3.35 (1.85–6.04)  < 0.001 4–10 1.38 (0.85–2.22) 0.191 648
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Fig. 3  Pediatric asthma health event risk with short-term exposure to PM2.5modified by temperature or season. Estimated odds ratios 
with confidence intervals from the case cross-over distributed lag models using delays for cumulative days of PM2.5 for (A) the Main PM2.5 model–
only PM2.5, (B) the Temperature model–PM2.5-Temp summarized across 3 groups for hotter (red), median (green) and colder (blue) temperatures, 
and (C) the Season model–PM2.5-Season displayed for 4 groups of Fall (maroon), Winter (blue), Spring (light green), and Summer (green)
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below). Additionally, a newer contribution from our 
study is that the PM2.5 impacts varied by temperature and 
season, and across respiratory categories all highlighted 
in the next sections.

Asthma and PM2.5 exposure
Numerous studies link air pollution to asthma. Several 
reviews have highlighted this connection, specifically for 
exacerbating existing asthma, but also with an increase of 
new-onset asthma [32, 83]. A meta-analysis of 84 stud-
ies including children, adults, or both found that out-
door air pollutants were associated with an increased 
risk of asthma exacerbations at lag 0–1  days [36] . The 
same  study also conducted age-based subgroup analy-
ses of children (0–14) and adults (> 14) and found chil-
dren with asthma were more susceptible to outdoor air 
pollution [36]. However, various other time-series stud-
ies using air pollutants have observed a lag effect with 
varying results from 0–5 days [33, 39, 51, 58, 68, 72] to 
6–7  days [15].   Our study, using the DLM, places the 
PM2.5 associated increased risk in children’s asthma 
events on the higher delayed  end  of these studies at a 
weekly average lag of 7–13 days.

Asthma and seasonal extreme temperature effects
Our study indicated the highest risk for asthma health-
care visits with increased PM2.5 occurred only during 
colder periods – both cold temperatures and winter peri-
ods. Of course, above the 45 0N parallel, these two fac-
tors for colder temperatures and winter season are in no 
doubt, conflated. However, very cold and dry or very hot 
and humid climate conditions have been shown to exac-
erbate asthma conditions [16, 25, 48]. An animal model 
demonstrated that high and low temperatures can aggra-
vate airway inflammation in mice suggesting that asth-
matics are more at-risk during exposures to high and 
low temperature extremes [20]. A recent review found 
that extreme cold exposures were associated with an 
increased risk of asthma by 19.77% [34]. Seasonal effects 
on asthma are inconclusive most likely because a range 
of temperature conditions have been shown to affect 
asthma risk. However, increased asthma risk has been 
observed in only fall and winter seasons [81].

LRTI and PM2.5 exposure
In this study, LRTI encounters for children increased 
with elevated PM2.5 for 12 cumulative days and peaked at 
a weekly average lag of 6–12 days. Studies on this cate-
gory of respiratory infections or specific infections within 
this category (e.g., bronchitis or pneumonia) vary in their 
findings. To discuss a few, numbers of acute lower res-
piratory infections for young children in Utah, USA, were 
found to increase after 1  week of increased PM2.5 and 
peak after 3  weeks of an increased exposure [35], while 
a similar study and results from Korea found acute lower 
respiratory infection hospitalizations to be associated 
with an increase in the 7-day running average of PM2.5 
[66]. Zhu et  al. [99] did not find a significant effect of 
short-term PM2.5 on childhood lower respiratory diseases 
in China, but did observe the effect with other air pollut-
ants (PM10, NO2, and SO2). In New York, USA, increases 
in PM2.5 from the previous 7 days were found to be asso-
ciated with hospital visits for culture-negative pneumo-
nia and bacterial pneumonia [18]. To further illustrate 
variability in results, a meta-analysis review of short-term 
exposure to PM2.5 and pneumonia-related hospitaliza-
tions found variable results across study populations, 
where elderly subgroups showed an increased risk ratio 
with unclear lag effects and younger patients did not have 
a significant increase in visits [43].

LRTI and seasonal extreme temperature effects
Our study showed the highest risk estimates for LRTI as 
a function of PM2.5 during colder temperatures but insuf-
ficient sample size to assess any seasonal PM2.5 mediated 
effects. These results are in line with past studies show-
ing LRTI to be a significant cause of hospitalizations, 
morbidity, and mortality worldwide with seasonal cli-
mate factors being associated with a higher probability of 
infection [24]. For example, Alvaro-Meca et al. [3] found 
that LRTI hospital visits were more frequent during lower 
temperatures. And Mäkinen et al. [60] demonstrated that 
cold temperatures were associated with increased occur-
rences of LRTI and a decrease in temperature preceded 
the onset of infections.

URTI and PM2.5 exposure
URTIs have also been extensively studied and linked to air 
pollutants. Here, we found a positive association between 

Fig. 4  Pediatric lower respiratory tract infection health event risk with short-term exposure to PM2.5modified by temperature or season. Estimated 
odds ratios with confidence intervals from the case cross-over distributed lag models using delays for cumulative days of PM2.5 for (A) the Main 
PM2.5 model–only PM2.5, (B) the Temperature model–PM2.5-Temp summarized across 3 groups for hotter (red), median (green) and colder (blue) 
temperatures, and (C) the Season model–PM2.5-Season displayed for 4 groups of Fall (maroon), Winter (blue), Spring (light green), and Summer 
(green)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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PM2.5 and children’s URTI healthcare events with the 
highest response at 13 days of accumulated PM2.5 with a 
peak at an average of 4–10 days prior to an event. As with 
asthma and LRTI, past research has shown that study 
population, study region, methodology, and type of upper 
respiratory tract infection can produce variations in the 
length of the delayed short-term effects. For example, in 
Beijing, China, a positive association between PM2.5 and 
increased influenza cases suggested a 1–2 month delayed 
response [53]. In Hefei, China, increasing concentrates of 
most all pollutants at lag days 3–6 were associated with 
increased URTI in children aged 0–14  years [56], while 
in Suzhou City, China, PM2.5 showed a significant asso-
ciation with these infections in children under 3  years 
old with a lag of 3 weeks [98]. In Kenya, a 2-week delayed 
response in children’s URTI from PM2.5 exposure was 
observed [50]. In Poland, moderate exposure to air pollu-
tion over 12 weeks was associated with an increased risk 
of URTI in children aged 3–12 years [73].

URTI and seasonal extreme temperature effects
Our study showed relationships between increased risk 
of URTI healthcare events after elevated PM2.5 during 
hotter periods. Elevated levels of PM2.5 accumulated 
across 13  days (with peak at an average 4–10  day lag) 
during hotter temperatures or during the summer/spring 
season yielded the highest risk of children’s URTI health-
care events. In general, URTI are thought to be more 
common in colder temperatures because colder exposure 
impairs nasal antiviral immunity [22, 37]. Viral infectious 
diseases affecting the upper tract way, such as influenza, 
have strong seasonal effects in winter temperate regions 
and are associated with colder (and dryer) conditions 
[71]. However, not all URTI spike in winter months in 
northern temperate sites, and others, like enterovirus and 
parainfluenza virus, can occur in summer months, and 
respiratory syncytial virus can occur earlier than influ-
enza in fall months [47]. Rhinoviruses and adenoviruses 
can circulate throughout the year with occasional peaks 
in autumn and winter for rhinoviruses and early spring 
for adenoviruses [19, 38]. In summary, most respiratory 
viruses follow a seasonal pattern but not all URTI are 
viruses, and some factors can increase the incidence of 
URTI, like mass crowding [2], and, as was observed in 
this study, air pollution.

On large effect sizes
We observed effect sizes substantially larger than what is 
commonly reported in the literature, and this difference 
warrants further comment. Our analyses found a 1 µg / 
m3 increase in ambient PM2.5 was associated with 2- or 
threefold increases in the rates of healthcare visits for 
pediatric respiratory conditions, whereas many obser-
vational studies find much lower effect estimates (e.g., 
1.05-fold increases). The analysis presented here is at 
the address-level allowing for more precise individual-
level PM2.5 estimates. These larger effect sizes can occur 
when we transition from using PM2.5 estimates aver-
aged over municipalities or jurisdictional boundaries 
to more precise PM2.5 estimates at a place of residence 
within those boundaries. Individual exposures within 
a jurisdictional boundary can vary greatly and result in 
large differences in individual exposure values, especially 
for small populated rural and intermountain areas. Evi-
dence of this hypothesis is shown in our post-hoc analy-
sis when exposure is assessed at the Zip Code level and 
yields effect sizes similar to what is observed in studies 
that aggregate to large spatial units (see Supplemen-
tary Fig. 1). Although we cannot say with certainty that 
finer scale exposure assessment explains our large effect 
sizes, these higher resolution exposure estimates may be 
important, particularly in areas in which PM2.5 may vary 
markedly over space.

Limitations
Air pollution case-crossover studies for small and 
rural populations are not without limitations. First, we 
acknowledge the study’s sample size. These data cover 
821 days with an average of 12.8 events per day among all 
three outcomes (1.06, 0.84, and 10.9 events for asthma, 
LRTI, and URTI, respectively). It has been suggested in 
simulation studies of pollution effects that thousands of 
observation days with an average of tens of events per 
day are needed [91]. In addition, it is known that small 
sample sizes result in more random error, possibly bias-
ing results. Second, we acknowledge that unmeasured 
time-variant factors might have provided additional con-
founding influence and could possibly impact estimates 
[8, 9]. To the degree that these factors occur at the indi-
vidual level, e.g., immunity or vaccination status, the 
impact is likely to be negligible given the case-crossover 

(See figure on next page.)
Fig. 5  Pediatric upper respiratory tract infection health event risk with short-term exposure to PM2.5modified by temperature or season. Estimated 
odds ratios with confidence intervals from the case cross-over distributed lag models using delays for cumulative days of PM2.5 for (A) the Main 
PM2.5 model–only PM2.5, (B) the Temperature model–PM2.5-Temp summarized across 3 groups for hotter (red), median (green) and colder (blue) 
temperatures, and (C) the Season model–PM2.5-Season displayed for 4 groups of Fall (maroon), Winter (blue), Spring (light green), and Summer 
(green)
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Fig. 5  (See legend on previous page.)
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design [11]. Third, we acknowledge that error in diagnos-
tic coding is quite possible within these data. Some cases 
may not be accurately categorized, and it is possible that 
such coding errors could be differential with respect to 
season. Fourth, the assessment of exposure could be sub-
ject to measurement (and modeling) error, especially in 
a rural, sparsely populated study area with only a limited 
number of fixed air quality monitors contributing to the 
estimates of PM2.5 [79]. However, we expect this error 
would have results in attenuated effect estimates [94]. 
Finally, it is important to remember that these individual-
level healthcare events are a combination of inpatient 
and outpatient visits. Direct comparison to only one data 
type might not be applicable.

Conclusions
Western Montana, USA, is a sparsely populated region 
of the inter-Rocky Mountains with complex air pollu-
tion patterns. This region is experiencing more frequent 
exceedance of daily air quality standards due to increases 
in wildfire smoke events during their summer/wildfire 
season months. However, the region also experiences 
elevated levels of PM2.5 during winter months from wood 
stove use with complex mountain meteorology and inver-
sion effects. Here, we explored short-term PM2.5  effects 
on three pediatric respiratory health outcomes (asthma, 
LRTI, and URTI) and how other factors, such as extreme 
temperature or seasonal period, modify the risk of air 
pollution-associated hospital visits. We found associa-
tions between elevated PM2.5  exposures and healthcare 
visits for all respiratory categories. We found interac-
tion effects with extreme temperatures and during high 
impacted PM2.5 seasons. We found increased risk for 
asthma and LRTI associated with elevated levels of PM2.5 
in colder temperatures, while increased risk for URTI 
associated with elevated levels of PM2.5 in hotter peri-
ods. Finally, we observed very large effect sizes that we 
hypothesized are a result of higher resolution estimates 
of exposure, emphasizing the importance of fine-scale 
exposure measurement, particularly in areas in which 
PM2.5 may vary markedly over space.

Finally,  communities in the western US will experi-
ence increases in morbidity and mortality related to 
higher frequency of extreme temperature and wildfire 
events [89]. At present, policy and public health mes-
saging related to air pollution and extreme temperatures 
flow through different agency pathways. For example, 
extreme cold and heat advisories often occur in advance 
based on local National Weather Service forecasting, and 
air quality advisories often occur in real-time according 
to EPA-based Air Quality Index measures. Communities 
at risk of wildfire smoke exposures and extreme tempera-
ture events need locally-informed guidance, integrated 

strategies that address these compound risks, and com-
munication approaches that include local knowledge and 
trusted sources. Local communities will be increasingly 
burdened with developing and sustaining strategies for 
adaptation and resilience to climate change, but we lack 
rigorous and reproducible models for such strategies, 
particularly as applicable to rural communities in the 
mountain west that additionally suffer from limited infra-
structure that can be leveraged for mitigation.
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