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Abstract

Background: Child blood pressure (BP) is predictive of future cardiovascular risk. Prenatal exposure to metals has
been associated with higher BP in childhood, but most studies have evaluated elements individually and measured
BP at a single time point. We investigated impacts of prenatal metal mixture exposures on longitudinal changes in
BP during childhood and elevated BP at 11 years of age.

Methods: The current study included 176 mother-child pairs from the Rhea Study in Heraklion, Greece and focused
on eight elements (antimony, arsenic, cadmium, cobalt, lead, magnesium, molybdenum, selenium) measured in
maternal urine samples collected during pregnancy (median gestational age at collection: 12 weeks). BP was
measured at approximately 4, 6, and 11 years of age. Covariate-adjusted Bayesian Varying Coefficient Kernel
Machine Regression and Bayesian Kernel Machine Regression (BKMR) were used to evaluate metal mixture impacts
on baseline and longitudinal changes in BP (from ages 4 to 11) and the development of elevated BP at age 11,
respectively. BKMR results were compared using static versus percentile-based cutoffs to define elevated BP.

Results: Molybdenum and lead were the mixture components most consistently associated with BP. J-shaped
relationships were observed between molybdenum and both systolic and diastolic BP at age 4. Similar associations
were identified for both molybdenum and lead in relation to elevated BP at age 11. For molybdenum
concentrations above the inflection points (~ 40-80 ug/L), positive associations with BP at age 4 were stronger at
high levels of lead. Lead was positively associated with BP measures at age 4, but only at high levels of
molybdenum. Potential interactions between molybdenum and lead were also identified for BP at age 11, but were
sensitive to the cutoffs used to define elevated BP.

(Continued on next page)

* Correspondence: Caitlin.G.Howe@Dartmouth.edu

fCaitlin G. Howe and Katerina Margetaki contributed equally as co-first
authors and Shohreh F. Farzan and Leda Chatzi contributed equally as co-
senior authors.

'Department of Epidemiology, Geisel School of Medicine at Dartmouth,
Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03766, USA
2Department of Preventive Medicine, University of Southern California, Los
Angeles, CA, USA

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-020-00685-9&domain=pdf
http://orcid.org/0000-0002-4935-9298
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Caitlin.G.Howe@Dartmouth.edu

Howe et al. Environmental Health (2021) 20:1

(Continued from previous page)

Page 2 of 16

Conclusions: Prenatal exposure to high levels of molybdenum and lead, particularly in combination, may contribute
to higher BP at age 4. These early effects appear to persist throughout childhood, contributing to elevated BP in
adolescence. Future studies are needed to identify the major sources of molybdenum and lead in this population.
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Background

Elevated blood pressure (BP) is an established risk factor
for cardiovascular disease (CVD) [1]. Longitudinal stud-
ies following children into adulthood have observed that
even in early life, BP is predictive of future cardiovascu-
lar risk [2]. For example, elevated BP in childhood has
been associated with increased risk for hypertension and
premature death from coronary heart disease, as well as
intermediate outcomes, including left ventricular hyper-
trophy and increased carotid intima-media thickness [2—4].
Higher BP levels in childhood have also been associated
with lower cognitive test scores in both early adulthood
and mid-life [5]. It is therefore critical to identify modifiable
factors that influence BP in early life.

There is substantial evidence supporting a link between
exposure to metals, metalloids, and metalloid-like elements
(hereafter collectively referred to as “metals”) and risk for
hypertension and CVD [6-9]. In fact, a representative study
of the general population in the United States has estimated
that molybdenum (Mo), lead (Pb), and antimony (Sb) each
contribute to ~ 6-7% of the population attributable risk for
high BP [8]. Several studies have also reported that arsenic
(As) and cadmium (Cd) exposures increase risk for elevated
BP and hypertension in adult populations [10-12]. Essential
elements, including cobalt (Co), magnesium (Mg), and
selenium (Se), have also been associated with BP levels in
adults [13-18]. However, these relationships may be com-
plex, as these elements have critical physiological functions,
but can be toxic at high levels [19, 20].

Although more limited, a growing body of evidence
suggests that metal exposures also contribute to elevated
BP in children and adolescents [21-25]. Exposure to
toxic metals during the prenatal period may be particu-
larly detrimental, as fetal development consists of a series
of carefully-timed events, and dysregulation of these pro-
cesses can have long-lasting consequences [26]. In support
of this, several studies have reported positive associations
between toxic metal exposures during pregnancy and BP
levels in childhood [27-30]. However, most of these
studies evaluated metals individually (focusing on Pb) and
measured BP at a single time point. Far less is known
about the impacts of complex metal mixtures, which are
more representative of human exposures, on longitudinal
changes in BP during childhood.

In the current study, we focused on a cohort of children
in Greece [31], a country with a high prevalence of

pediatric hypertension [32-35]. We examined the impact
of prenatal exposure to a complex mixture of metals on 1)
longitudinal changes in BP across 7 years of follow-up
(ages 4 to 11) and 2) risk of elevated BP at 11 years of age.
We investigated eight metals (As, Cd, Co, Mg, Mo, Pb,
Sb, Se) that have been associated individually with BP
in either children or adults and used flexible mixture
modeling approaches that can capture complex non-
linear relationships and possible synergistic and antagonis-
tic relationships between mixture components [36, 37],
including a novel approach that can accommodate longitu-
dinal data [37].

Methods

Study participants

The current study focused on a subset of mother-child
pairs from the Rhea Study, a longitudinal cohort in
Heraklion, Crete, Greece [31]. Briefly, participants were
included in Rhea if they were pregnant, residents of the
study area, 16 years of age or older, and had no commu-
nication handicap. Participants were recruited in early
pregnancy at the time of their first major ultrasound
examination (< 15 weeks’ gestation). The current study
focused on 176 mother-child pairs with urinary metal
measurements (excluding extreme outliers based on the
mean * 4 SD), child BP measures at all three time points
(4, 6, and 11 years of age), and complete covariate infor-
mation (Fig. S1). This study was conducted according to
the principles of the Declaration of Helsinki and was
approved by the ethical committee of the University
Hospital in Heraklion, Greece and the Regional Ethical
Review Board in Stockholm, Sweden. Informed consent
was obtained from all participants.

Urine collection and urine metals analysis

In early pregnancy (median (IQR): 12 [11, 15] weeks’
gestation), maternal spot urine samples were collected in
sterile, polypropylene urine cups. These urine samples
were aliquoted into 4 ml cryotube vials (Thermo Fisher
Scientific, USA) and stored at —80°C. A panel of 15
metals was measured in urine by inductively coupled
plasma mass spectrometry (Agilent 7700X; Agilent
Technologies, Tokyo, Japan) with an Octopole Reaction
System at the Institute of Environmental Medicine,
Karolinska Institutet, Stockholm, Sweden. Urine samples
were diluted 1:10 in 1% nitric acid (prepared from 65%
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Suprapur, Merck, Darmstadt, Germany). For the current
study, we focused on a subset of eight metals [As (m/z
75), Cd (m/z 111), Co (m/z 59), Mg (m/z 24), Mo (m/z
95), Pb (m/z 202), Sb (m/z 121), Se (m/z 75)] that have
previously been associated individually with BP and for
which urine is considered an acceptable biomarker of
exposure [8, 11-16, 21-25, 27-30, 38—45]. The one
exception to this second criterion was Pb, as blood is the
preferred biomarker of exposure [46]. However, we
retained Pb, because urine can capture inter-individual
differences in exposure [46], and Pb has been associated
with elevated BP in both children and adults across
multiple populations [8, 27, 29, 30, 38]. The limits of
detection (LOD) for As, Cd, Co, Mg, Mo, Pb, Sb, and Se
were < 0.03 pg/L, <0.001 pg/L, <0.001 pg/L, <1.2 pg/L,
<0.03 pg/L, <0.003 pg/L, <0.002 pg/L, and < 0.014 ug/L,
respectively. One sample had a Sb concentration below
the LOD; the machine value for Sb was retained for this
sample. All other samples were above the LOD for each
metal. Quality control was performed by including
two commercial control materials (Seronorm™ Trace
Elements Urine Blank, REF 201305, LOT OK4636 and
Seronorm™ Trace Elements Urine, REF 201205, LOT
NO2525) in each analytical run. Overall, the obtained
urinary element concentrations showed good agree-
ment with the reference value for each element (Table S1).

Specific gravity

Urinary specific gravity was measured using a digital re-
fractometer (EUROMEX RD712 Clinical Refractometer;
Euromex Microscopen BV, Arhnem, Holland). To account
for urine dilution, urinary metal concentrations were
adjusted for specific gravity using the following formula:
urinary concentration x [(mean specific gravity (1.020) — 1)/
(individual specific gravity — 1)]) [47].

Child BP measures

Trained research assistants measured systolic BP (SBP)
and diastolic BP (DBP) at approximately 4, 6, and 11
years of age. After 5min of rest in a seated position, BP
measures were obtained using a Dinamap automated
oscillometric recorder (Dinamap Pro Care 400, Critikon,
Tampa, FL) from the child’s right arm with a cuff that
was of appropriate size for the child’s arm circumfer-
ence. A minimum of three BP measurements were
obtained at each visit, taken one minute apart. The aver-
age of these measurements was calculated for both SBP
and DBP [48]. For primary analyses, elevated BP at 11
years of age was defined as a SBP measure >110 mmHg
and/or a DBP measure >70 mmHg [49]. Xi et al. have
previously proposed this definition for elevated BP for
children aged 6-11, because these static cutoffs are eas-
ier to implement in clinical settings [49]. This definition
of elevated BP in childhood is similarly predictive of
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hypertension and preclinical CVD in adulthood as the
American Academy of Pediatrics (AAP) definition,
which uses percentile-based cutoffs [49, 50]. In sensitiv-
ity analyses, we also examined elevated BP at age 11
defined using the AAP guidelines (i.e., SBP and/or DBP
greater than or equal to the 90th percentile for sex, age,
and height) [51].

Covariate information

Personal interviews combined with self-administered
questionnaires and medical records were used to obtain
information on potential confounders and precision vari-
ables. These included maternal age at urine collection,
duration of maternal education at recruitment (<6 years,
>6vyears and < 12years, or>12years), maternal pre-
pregnancy BMI (kg/m?), and maternal ever tobacco
smoke use during pregnancy (reported at 12 weeks’ ges-
tation). Child characteristics included: age, sex, height,
BMI, and environmental tobacco smoke (ETS) exposure
in childhood at each time point (4, 6, 11 years), which
was defined as any member of the household smoking
more than one cigarette inside the home at the time of
the interview. Child height and weight were measured
by trained research assistants using a validated scale
(Seca Bellisima 841 scale; Seca GmbH & Co. KG, Hamburg,
Germany) according to standard operating procedures.
Child overweight and obesity were estimated using the
International Obesity Task Force guidelines [52]. In prelim-
inary models, we also evaluated the impact of additionally
adjusting models for the frequency (number of times per
week) of maternal fish and seafood consumption during
pregnancy for the 150 participants who had this informa-
tion available. Maternal fish and seafood consumption was
determined using a food frequency questionnaire adminis-
tered at recruitment [53]. Results were similar after this
additional adjustment, so this covariate was excluded from
final models.

Statistical analyses

Statistical analyses were conducted using Stata 16 and R
(Version 3.6.2). Descriptive statistics were calculated for
participant demographics, urinary metal concentrations,
and BP measures. Because the urinary metals were
largely right-skewed, they were log,-transformed to re-
duce the influence of extreme values. These measures
were then mean-centered and scaled. Pearson correla-
tions were used to evaluate relationships between each
pair of metals. Because we hypothesized a priori that 1)
essential elements (Co, Mg, Mo, Se) would have non-
linear relationships with BP, 2) toxic and essential ele-
ments would act in opposing directions, and 3) some
metals would act synergistically or antagonistically, we
used two mixture modeling approaches that can accom-
modate and examine these scenarios. We used Bayesian
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Varying Coefficient Kernel Machine Regression (BVCKMR)
to evaluate prenatal metal mixture impacts on DBP and
SBP at age 4 (baseline) and also on longitudinal changes in
these BP measures during childhood. BVCKMR is a re-
cently developed approach that, unlike most environmental
mixture methods, can accommodate longitudinal data by
estimating associations between mixtures and health out-
come trajectories [37]. To evaluate the impact of prenatal
metal mixtures on elevated BP at 11 years of age, we used a
similar mixture modeling method, Bayesian Kernel
Machine Regression (BKMR) [36], which was primarily
designed for evaluating outcomes measured at a single
time point.
The BVCKMR model is defined as

Yij = Y1tV X age; + hi(z1i, *+, Zai)
+ hy(z1iy -eey Zmi) X age;; + xiTﬁ + uiiji + €ij

where the outcome y; is related to the exposure mix-
ture z; = (zyjpnZngi) - through two flexible functions h;(-)
and h,(-), controlling for potential confounders x; = (xy;,
..Xpi) [37]. The h; function represents the association
between the mixture and the BP measures at baseline
(age 4) while &, represents how the mixture modifies the
annual rate of change in the BP measure over time (age
4 to 11). This BVCKMR model assesses the directional-
ity and relative importance of each mixture component
on linear health outcome trajectories, while accounting
for possible nonlinear relationships between each expos-
ure and outcome and non-additive effects of the mixture
components [37]. The relative importance of each mixture
component is defined as the difference in the outcome,
comparing the individual metal of interest at high levels
(75th percentile) versus low levels (25th percentile), while
holding all other metals constant at their median values.
Metal-outcome associations were considered statistically
significant if the posterior credible interval for the effect
estimate did not span 0. We ran 100,000 MCMC itera-
tions, using the first half of iterations as burn-in.

The BKMR model is defined as

v = h(zy, -, 2v) + X B+ €i

where function /() represents the kernel exposure-
response machine function, coefficients 87 represent ef-
fect estimates for the Xth covariate for the ith individual,
and g; represents the model residuals [36]. Using the
“bkmr” R package, we chose the hierarchical variable
selection option, grouping elements into toxic (As, Cd,
Pb, Sb) and essential (Co, Mg, Mo, Se) elements, given a
priori hypotheses that metals within each group would
similarly impact BP (i.e., adverse effects for toxic metals
and non-linear relationships for essential elements), and
ran 100,000 MCMC iterations. The first half of iterations
was used as burn-in. To reduce potential autocorrelation,
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we thinned the chains, selecting every 10th iteration.
Model convergence was visually inspected using trace
plots. Posterior inclusion probabilities (PIPs) were used to
rank the importance of each mixture component.

BKMR and BVCKMR models were adjusted for hy-
pothesized confounders and precision variables, identi-
fied using directed acyclic graphs (DAGs) (Fig. S2). Final
BKMR and BVCKMR models were adjusted for the
minimum set of potential confounders necessary to close
all backdoor paths between the exposure and outcome:
maternal age (continuous), maternal education (categor-
ical: <6 years, > 6 years and < 12 years, or > 12 years), ma-
ternal pre-pregnancy BMI (continuous), and maternal
smoking during pregnancy (binary: ever versus never).
Models were also adjusted for three potential precision
variables that were prioritized because they are known
to be important predictors of BP in children [51]: child
sex (binary: female versus male), child’s exact age (con-
tinuous), and child height (continuous) at the relevant
time points (11-year time point only for BKMR; 4-, 6-,
and 11-year time points for BVCKMR). Given the high
prevalence of ETS exposure among children in Greece
[54, 55], we also examined results from both BVCKMR
and BKMR models after additionally adjusting for this
potential precision variable in sensitivity analyses (ETS
exposure at each time point for BVCKMR and ETS
exposure at age 11 for BKMR). Child BMI was identified
as a potential collider based on our DAG (Fig. S2), and
was therefore excluded from all models. In sensitivity
analyses, we compared BKMR results when using the
AAP percentile-based cutoffs [51] with the static cutoffs
proposed by Xi et al. [49] to define elevated BP at age 11.

For confirmatory analyses, we compared results from
BVCKMR (for SBP and DBP measures) using generalized
additive mixed models (GAMMs), in which each metal
was evaluated individually. Similarly, BKMR results (for
elevated BP at age 11) were compared with results from
generalized additive models (GAMs). We conducted
GAMMs and GAMs using the “mgev” R package [56].
These models were adjusted for the same set of covariates
as the BVCKMR and BKMR models, respectively. Interac-
tions between pairs of metals were examined for both sets
of models, and statistical significance was determined for
the individual metal associations and pairwise interactions
using a p-value threshold of 0.05.

Results

Participant characteristics are shown in Table 1. The
mean (SD) maternal age and pre-pregnancy BMI was 30
(4) years and 24.0 (4.0) kg/mz, respectively, and 23% of
the women reported ever smoking during the pregnancy.
There were more female (55.7%) than male (44.3%) chil-
dren in the study sample. The mean (SD) BMI at age 4,
6, and 11 was 16.4 (2.0) kg/m?16.8 (2.7) kg/m?, and 20.4
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Table 1 Characteristics of 176 Mother-Child Pairs from the Rhea Cohort

Participant Characteristic

N (%) or Mean (SD)

Maternal Characteristics

Maternal Age, years 303 (4.2)
Pre-Pregnancy BMI, kg/m? 240 (4.0)
Maternal Education

Low (<6 years) 18 (10.2)

Medium (> 6 years and < 12 years) 90 (51.1)

High (=12 years) 68 (38.6)
Smoking During Pregnancy

Non-Smoker 136 (77.3)

Smoker 40 (22.7)
Frequency of Fish and Seafood 1.0 (0.6)
Consumption?, Times/Week
Child Characteristics
Sex

Male 98 (55.7)

Female 78 (44.3)
Elevated Blood Pressure at Age 11 (Static Cutoffs)®

Elevated 54 (30.7)

Normal 122 (69.3)
Elevated Blood Pressure at Age 11 (Percentile Cutoffs)

Elevated 31 (17.6)

Normal 145 (82.4)
Repeated Measurements 4 Years 6 Years 11 Years
Exact Age, years 42 (0.2) 6.5 (0.3) 109 (0.3)
Height, cm 104.5 (4.2) 120.0 (4.8) 144.3 (6.3)
BMI, kg/m2 164 (2.0) 16.8 (2.7) 204 (4.1)
Overweight 25 (14.2) 35 (19.9) 58 (33.0)
Obese 10 (5.7) 14 (8.0) 20 (114)
Environmental Tobacco Smoke Exposure 74 (42.8) 64 (36.4) 45 (25.6)
Systolic Blood Pressure, mmHg 90.6 (7.6) 94.0 (8.2) 105.8 (9.4)
Diastolic Blood Pressure, mmHg 53.7 (5.0) 539 (6.4) 61.2 (6.9)

n=150

PElevated blood pressure at age 11 was defined using the static cutoffs recommended by Xi et al. [49]: systolic blood pressure > 110 mmHg and/or a diastolic

blood pressure > 70 mmHg

“Elevated blood pressure was defined as systolic blood pressure or diastolic blood pressure > 90th percentile for sex, age, and height, according to the 2017

American Academy of Pediatrics guidelines [51]

(4.1) kg/m?, respectively. There was a high prevalence of
overweight/obesity at each age: 35 (19.9%) at age 4, 49
(27.8%) at age 6, and 78 (44.3%) at age 11. On average,
BP measures increased during childhood. The mean
(SD) SBP was 90.6 (7.6) mmHg, 94.0 (8.2) mmHg, and
105.8 (9.4) mmHg at ages 4, 6, and 11, respectively. For
the same ages, the mean (SD) DBP was 53.7 (5.0)
mmHg, 53.9 (6.4) mmHg, and 61.2 (6.9) mmHg, respect-
ively. The prevalence of elevated BP at the 11-year time
point was 30.7% when using the static cutoffs proposed

by Xi et al. [49] and 17.6% when using the percentile-
based cutoffs proposed by the AAP [51]. Overall, the
study sample was similar to the larger Rhea Cohort, al-
though participating mothers were slightly older and
more educated compared with women who did not meet
the inclusion criteria (Table S2). There were also some
very small, although statistically significant, differences
between the two groups for DBP at age 6 and for SBP at
age 11 (Table S2). Urinary metal concentrations for
study participants are shown with and without
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Table 2 Early Pregnancy Maternal Urinary Metal Concentrations (n = 176)

Urinary Metal Geometric p10 p25 p50 p75 p90 n<LOD

Concentrations Mean (95%Cl)

Unadjusted
Magnesium (mg/L) 596 (524, 67.7) 16.6 35.7 76.1 1.1 14.5 0
Cobalt (ug/L) 048 (041, 0.56) 0.1 0.26 044 1.07 1.97 0
Selenium (ug/L) 194 (17.3, 21.6) 6.0 130 228 338 418 0
Molybdenum (ug/L) 58.15 (51.90, 65.16) 209 358 61.0 984 145.8 0
Arsenic (ug/L) 13.55 (11.01, 16.68) 2.7 52 12.1 30.5 80.1 0
Cadmium (pg/L) 041 (0.35, 047) 0.11 0.23 044 0.77 1.21 0
Antimony (ug/L) 0.05 (0.04, 0.05) 0.02 0.03 0.05 0.08 0.11 1
Lead (ug/L) 0.82 (0.71, 0.96) 020 052 1.06 1.56 232 0

SG-Adjusted
Magnesium (mg/L) 66.9 (61.3,729) 309 50.5 713 100.9 1334 0
Cobalt (ug/L) 0.54 (048, 0.61) 0.22 0.28 046 1.01 1.78 0
Selenium (ug/L) 21.72 (20.72, 22.77) 15.2 17.3 218 27.0 319 0
Molybdenum (ug/L) 65.26 (61.13, 69.66) 38.1 50.5 64.9 86.7 1141 0
Arsenic (ug/L) 15.21 (12,50, 18.49) 39 52 122 345 111.0 0
Cadmium (pg/L) 045 (041, 0.50) 0.19 030 047 0.69 1.07 0
Antimony (ug/L) 0.05 (0.05, 0.06) 0.03 0.04 0.05 0.07 0.09 1
Lead (ug/L) 0.92 (0.82, 1.04) 044 0.69 1.00 148 202 0

Abbreviations used: LOD limit of detection, p70 10th percentile, p25 25th percentile, p50 50th percentile, p75 75th percentile, SG specific gravity

adjustment for specific gravity in Table 2, and Pearson
correlations between metal pairs are shown in Fig. 1.
Most of the metals were positively correlated with each
other, although correlations were generally weak to
moderate, ranging from +0.01 to +0.45. The strongest
correlation was observed between Cd and Pb (r= 0.45,
p<0.01).

BVCKMR identified statistically significant associations
between Mo and both SBP and DBP (evaluated continu-
ously) at baseline (age 4) (Fig. 2). Setting other metals to
their median, an interquartile range increase in Mo was
associated with a 0.7 (95% CI: 0.0, 1.4) mmHg higher
SBP and a 1.3 (95% CI: 0.6, 1.9) mmHg higher DBP at
age 4 (Table S3). However, these relationships were
found to be J-shaped, such that the positive associations
between Mo and BP measures were driven by Mo con-
centrations above an inflection point of ~ 82 pg/L for
SBP and ~ 52 pg/L for DBP (Fig. 3). In contrast, inverse
associations were observed for Mo concentrations falling
below this inflection point (Fig. 3). U- and J-shaped
relationships were also observed between Mo and BP
measures when using GAMMs (Fig. S3). In addition to
these baseline associations, Mo was associated with sig-
nificant longitudinal changes in DBP (Fig. 2, Table S3).
BVCKMR estimated that an interquartile range increase
in Mo was associated with a-0.2 (95% CIL -0.3, 0.0)
mmHg lower per-year increase in DBP from ages 4 to
11 (setting other metals to their median), which was

linear (Fig. 3, Table S3). Mo was not associated with
significant changes in SBP over time (Fig. 3, Table S3).

Although overall associations between Pb and the con-
tinuous BP measures were null, both for BVCKMR and
GAMMs (Fig. 2, Table S3, Fig. S3), significant pairwise
interactions between Pb and Mo were identified by
GAMMs (SBP: approximate p for joint smooth term <
0.01, DBP: approximate p for joint smooth term <0.01)
(Table S4). These interactions were confirmed visually
by BVCKMR (Fig. 4). Positive associations were observed
between Pb and continuous BP measures at age 4 when
Mo levels were set to their 75th, but not 25th, percentile
(with other metals set to their median) (Fig. 4). Associa-
tions between Mo and continuous BP measures at age 4
were also modified by Pb; for Mo concentrations above
the inflection points, the positive associations between
Mo and BP were stronger when Pb levels were set to
their 75th, compared with 25th, percentile (setting other
metals to their median) (Fig. 4).

Co was associated with significantly higher levels of
both SBP and DBP (evaluated continuously) at baseline
(Fig. 2). Setting other metals to their median, an inter-
quartile range increase in Co was associated with a 1.0
(95% CI: 0.1, 2.0) mmHg higher SBP and a 1.0 (95% CI:
0.1, 1.9) mmHg higher DBP at age 4. However, these re-
lationships were found to be non-linear, such that the
positive associations were only observed for Co concen-
trations exceeding ~ 0.5 pg/L (Fig. S4). Co was also
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associated with significantly lower per-year increases in
both SBP and DBP from ages 4 to 11 (Fig. 2, Table S3).
Setting other metals to their median, BVCKMR esti-
mated an interquartile range increase in Co to be associ-
ated with a - 0.8 (95% CI: - 1.0, - 0.5) mmHg lower per-
year increase in SBP and a-0.4 (95% CL: - 0.6, —0.2)
mmHg lower per-year increase in DBP during this
period (Table S3). However, this association was non-
linear for SBP, such that the lower per-year increase in
SBP was only observed for Co concentrations below
~ 0.5 pg/L (Fig. S4). In contrast with the BVCKMR results,
Co was not significantly associated with either SBP or
DBP when evaluated individually using GAMMs
(Fig. S3).

Mg was not significantly associated with continuous
BP at baseline, but was associated with significantly

higher per-year increases in both SBP and DBP from age
4 to 11 (Fig. 2, Table S3). Setting other metals to their
median, BVCKMR estimated that an interquartile in-
crease in Mg was associated with a 0.3 (95% CI: 0.1, 0.4)
mmHg higher per-year increase in SBP and a 0.4 (95%
CL: 0.2, 0.6) mmHg higher per-year increase in DBP.
These longitudinal associations were driven by Mg
concentrations > 66.9 mg/L (Fig. S5). Mg was not
significantly associated with either SBP or DBP when
evaluated individually using GAMMs (Fig. S3).
Although BVCKMR identified a significant inverse as-
sociation between Cd and DBP, evaluated continuously
at age 4, a similar association was not observed for SBP
(Fig. 2, Table S3). Furthermore, Cd was not associated
with longitudinal changes in either SBP or DBP (Fig. 2,
Table S3), and GAMMSs did not identify significant
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associations between Cd and either SBP or DBP (Fig.
S3). Associations between remaining metals (As, Sb, Se)
and continuous BP measures were consistently null
across methods (Fig. 2, Table S3, Fig. S3).

The primary BKMR model for elevated BP at age 11
estimated similar group PIPs for toxic and essential ele-
ments (Table S5). Within the essential element group,
Mo ranked highest, and within the toxic metal group, Pb
ranked highest (Table S5). Similar to the BVCKMR
results for Mo and continuous BP at age 4, BKMR iden-
tified a J-shaped relationship between Mo and elevated
BP at age 11 (Fig. 5). A J-shaped relationship was also
identified between Pb and elevated BP at age 11 (Fig. 5).
Additionally, a possible interaction was identified be-
tween Mo and Pb for elevated BP at age 11, such that

the inflection point for Mo decreased with increasing
levels of Pb (~ 66 pg/L for Pb at its 10th percentile com-
pared with ~ 46 pg/L for Pb at its median compared with
~42 ug/L for Pb at its 90th percentile) (Fig. 5). Similarly,
the inflection point for Pb decreased with increasing
levels of Mo (~0.6 ug/L for Mo at its 10th percentile
compared with ~ 0.4 pg/L for Mo at its median com-
pared with ~ 0.2 ug/L for Mo was at its 90th percentile)
(Fig. 5). Other metals were not predictive of elevated
BP at age 11 (Fig. S6). Similar to the BKMR results,
when evaluating the metals individually using GAMs,
U-shaped and J-shaped relationships were observed,
respectively, for Mo and Pb in relation to elevated BP
at age 11 (Fig. S7), although neither association was
statistically significant (approximate p =0.37 and 0.49,
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respectively). Furthermore, when using GAMs, inflec-
tion points of ~ 66 pg/L and ~ 0.4 pug/L were identified
for Mo and Pb, respectively (Fig. S7), and a suggestive
interaction was identified between Mo and Pb (ap-
proximate p for tensor product smooth term =0.05)
(Table S4).

BVCKMR results were similar after additionally adjust-
ing for childhood ETS exposure at each time point, al-
though the positive associations between Mo and
baseline DBP and between Mg and the change in DBP
were stronger (Table S6). The inverse association be-
tween Co and the change in DBP was also weaker after
this adjustment, although still statistically significant
(Table S6). BKMR results were also similar after add-
itionally adjusting for ETS exposure at age 11 (Table S7,

Fig. S8). Mo and Pb consistently ranked highest for their
associations with elevated BP at age 11 (Table S7). J-
shaped associations were observed between each metal
and this outcome, consistent with the primary model
(Fig. S8). When using the AAP percentile-based cutoffs
for defining elevated BP at age 11, BKMR similarly
ranked Mo and Pb highest for their associations with
this outcome (Table S8, Fig. S9). However, bivariate rela-
tionships between Mo and Pb were inconsistent. In con-
trast with the primary model, the association between
Mo and elevated BP at age 11 did not differ by Pb, and
the U-shaped association between Pb and elevated BP at
age 11 was only observed at low-to-moderate levels of
Mo (Fig. S9).
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Discussion

In the current study, we examined the impact of pre-
natal metal mixture exposures on BP in a cohort of chil-
dren in Greece, a country with a high prevalence of
pediatric hypertension [32-34]. We used two mixture
modeling approaches, including a novel method that can
accommodate longitudinal data [37] and repeated BP
measures spanning 7 years of follow-up to investigate
the impact of prenatal exposure to a complex mixture of
metals on BP trajectories in childhood and risk for ele-
vated BP in early adolescence. Of the eight metals evalu-
ated, Mo and Pb were most consistently associated with
child BP. J-shaped associations were identified between
each metal and continuous BP at age 4. Similar non-
linear associations were also observed for each of these
metals and elevated BP at age 11. Additionally, a possible
synergistic interaction between Mo and Pb was identi-
fied for BP at age 4, which was robust across multiple
methods.

There is sufficient evidence supporting a link between
Pb exposure and increased risk for hypertension in
adults [57], with possible mechanisms including alter-
ations in the transport and distribution of calcium, de-
creased nitric oxide availability, dysregulation of
vasoactive hormones, and increased oxidative stress and
inflammation [58]. However, much less is known about
the effects of Pb exposure on BP in early life. Although
several studies have reported associations between pre-
natal Pb exposure and increased BP in children, these

studies focused on a single time point in childhood [27,
29, 30]. In the current study, we examined the impact of
prenatal Pb exposure as part of a larger mixture on BP
at multiple time points in childhood (4, 6 and 11 years of
age). Although our longitudinal mixture analysis did not
find prenatal Pb to be associated with significant changes
in BP across childhood, it was associated with higher BP
measures at age 4 and was also predictive of elevated BP
at age 11. These findings suggest that prenatal Pb does
not accelerate age-associated increases in BP during
childhood, but may increase BP in early childhood, con-
tributing to elevated BP in adolescence. Interestingly, the
associations between prenatal Pb exposure and BP at age
4 varied by Mo level. Positive associations were only ob-
served at high concentrations of Mo, indicating a poten-
tial synergistic interaction between this pair of metals. A
similar interaction was also identified between Pb and
Mo in relation to elevated BP at age 11 in the primary
analysis, which used static cutoffs to define this outcome
[49], but this interaction was not robust when using the
AAP percentile-based cutoffs [51]. We therefore cannot
rule out the possibility that this interaction may be a
chance finding. To our knowledge, interactions between
Pb and Mo have not previously been examined in
relation to BP.

Although less extensively studied compared with Pb,
Mo has also been associated with increased BP and re-
lated cardiovascular outcomes [8, 59, 60]. Consistent
with the current study, two studies in adults have
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similarly investigated and identified non-linear relation-
ships between Mo and BP or other cardiovascular out-
comes [59, 60]. One of these studies reported a U-
shaped relationship between urinary Mo and hyperten-
sion with an inflection point (~ 60 pg/L) that falls within
the range of inflection points identified for Mo and BP
in our study of children (~42-82pg/L) [59]. To our
knowledge, previous studies have not investigated the
longitudinal effects of Mo on BP in either children or
adults. Although we found Mo to be associated with sig-
nificantly smaller increases in DBP across childhood, the
J-shaped relationship identified between Mo and BP at
age 4 was similarly observed for elevated BP at age 11.
Thus, the effects of Mo on BP in early childhood seem
to persist into adolescence despite the longitudinal de-
creases observed for DBP. This is likely due to SBP
remaining elevated from age 4 to 11. Interestingly, the
associations between Mo and BP varied by Pb level. For
example, the positive associations observed between high
concentrations of Mo (> 82 pg/L for SBP and > 52 pg/L
for DBP) and continuous BP at age 4 were stronger at
high levels of Pb, which suggests that Pb may enhance
the toxicity of Mo. While speculative, one potential
mechanism by which Mo and Pb may jointly increase
BP is through increased xanthine oxidase (XO) activity.
XO is a Mo-dependent enzyme involved in purine me-
tabolism which generates uric acid [61]. Previous studies
have reported that Pb exposure may increase XO activity
and uric acid levels [62—-64], both of which have been as-
sociated with higher BP and increased risk for hyperten-
sion, including in children [65-69].

Although less consistent compared with findings for Pb
and Mo, complex relationships were also identified be-
tween Co and BP, which differed by exposure level. For
example, BVCKMR identified potential adverse effects of
high concentrations of Co (> 0.5 pug/L) on continuous SBP
and DBP at baseline, whereas low concentrations of Co (<
0.5 pg/L) were associated with protective effects longitu-
dinally. However, Co was not predictive of elevated BP at
age 11, and no clear patterns of association were observed
between Co and any of the BP measures when this metal
was evaluated individually using more traditional ap-
proaches (GAMMs and GAMs). Findings from previous
studies on Co and BP have also been inconsistent. For ex-
ample, while serum Co has been associated with reduced
risk for pregnancy-induced hypertension and lower BP
levels in children [13, 22], higher urinary Co concentra-
tions have been reported among adults with elevated BP
[8]. One potential explanation for these conflicting results
may be the exposure levels represented by each popula-
tion, as U-shaped relationships have previously been re-
ported between Co and other outcomes, such as fetal
growth [70], indicating protective effects at low (but not
high) levels of exposure [41]. However, this would not
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explain the inconsistencies observed in the current study
when using mixture modeling versus more traditional ap-
proaches. These differences are more likely explained by
confounding from metal co-exposures, which is accounted
for in mixture models (BVCKMR and BKMR) but not sin-
gle metal analyses (GAMMs and GAMs).

Findings for other metals were unexpected or null. For
example, when using BVCKMR we observed possible ad-
verse effects of Mg (at high concentrations) on child BP
(assessed continuously). This result is inconsistent with
most [15, 17, 18], though not all [71], previous studies of
Mg and BP. For example, one study of pregnant women
found urinary Mg excretion in early pregnancy to be
associated with increased SBP in late pregnancy [71].
Importantly, most studies investigating relationships be-
tween Mg and BP were conducted among non-pregnant
adults, and we are unaware of any studies that have ex-
amined impacts of prenatal Mg on child BP. Another
unexpected result was the inverse association observed
between urinary Cd and DBP at age 4 when using
BVCKMR. In contrast, previous studies in adults have
largely observed adverse effects of Cd exposure on BP
[10, 12], while null associations have generally been re-
ported for children and adolescents [38, 72-75]. How-
ever, a recent cross-sectional analysis of children and
adolescents in the United States similarly observed an
inverse association between urinary Cd and BP [72], pos-
sibly due to unmeasured confounding from diet, which
is the main source of Cd among non-smokers [40].

Despite prior evidence that As, Sb, and Se may impact
BP [8, 10-12, 14—16, 28, 76—78], results for these metals
were consistently null. For As and Sb, one potential
explanation may be the low exposure levels in Rhea. A
null association was also observed between prenatal As
exposure and child BP in the New Hampshire Birth
Cohort, which is similarly represented by As exposures
in the low-to-moderate range [27], and associations
between Sb and cardiovascular outcomes have only been
observed in more highly exposed adults [8, 78-81].
While numerous studies have examined relationships
between Se and BP, findings have been largely inconclu-
sive, with protective, adverse, and null associations
observed depending on the study population [14]. To
our knowledge, only two studies have investigated these
relationships in children [77, 82]. One study, which
reported higher urinary Se concentrations, observed a
positive and significant correlation with DBP [77]. How-
ever, the second study, which similarly evaluated Se in
the context of a mixture but measured in blood, did not
find Se to be predictive of child BP [82].

Identifying sources of Pb and Mo exposure for preg-
nant women in Greece is critical, given the consistent
adverse associations observed with BP in early childhood
in Rhea. Few studies have investigated metal exposures
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in Greek populations. However, food and drinking water
are major sources of Pb for European populations [83],
and elevated Pb in drinking water has been observed in
certain regions of Greece, including Crete [84]. Contam-
inated drinking water may therefore be a possible source
of Pb exposure for this population. Diet is likely the
main source of exposure for Mo [44]. Although legumes
are particularly rich sources of this element, major diet-
ary sources can vary by population. In European adults,
cereals and cereal-based products are important dietary
sources of Mo [85]. In the U.S., yogurt consumption has
also been identified as an important predictor of urinary
Mo for pregnant women, while chili pepper consump-
tion was the strongest dietary predictor of urinary Mo in
a study of pregnant women in Mexico [86, 87]. Prenatal
vitamin use has also been associated with urinary Mo in
certain populations, but this likely reflects concurrent
use of other supplements, as prenatal vitamins do not
typically contain Mo [86, 88]. Another possible source of
Mo exposure is pollution from coal combustion [44].
While coal is currently being phased out, it still contrib-
utes to a major fraction of electricity production in
Greece [89].

The current study had many strengths, including the
measurement and evaluation of multiple metals in early
pregnancy and repeated child BP measurements across
7 years of follow up. We also used two novel mixture
modeling approaches that can account for complex non-
linear associations, as well as synergistic and antagonistic
relationships. To our knowledge, this is the first study to
use BVCKMR, a longitudinal mixture modeling ap-
proach, to investigate the impact of an environmental
mixture on child BP trajectories. By applying this
method, we were able to evaluate how exposure to a
complex metal mixture during pregnancy influences
longitudinal changes in BP across childhood, in addition
to examining impacts on BP in both early childhood and
adolescence.

Our study also had important limitations. Although
the estimated prevalence of elevated BP at age 11 in
Rhea was similar to previous reports of elevated BP
among adolescents in Greece [32-34], it may be an
overestimate, as it was based on a single BP measure-
ment [51]. However, it is unlikely that measurement
error would have differed by prenatal metals exposure.
While urine is an accepted biomarker of exposure for
As, Cd, Co, Mg, Mo, Sb, and Se, it is also important to
acknowledge that blood is the preferred biomarker for
Pb [46]. While urinary Pb does reflect some of the inter-
individual differences in exposure, blood Pb is a more
sensitive biomarker [46]. Our use of urinary Pb may
have therefore biased results toward the null. The use of
total urinary As as a biomarker of As exposure is also a
limitation. While total urinary As can reflect inorganic
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As and its metabolites, which are toxic, it can also reflect
non-toxic arsenicals derived from fish and seafood [90].
Results were similar after additionally adjusting models
for maternal fish and seafood consumption, but we
cannot rule out the possibility of residual confounding.
Another important consideration is that urinary metals
were measured at a single time point in early pregnancy
(median gestational age at collection: 12 weeks). It is
therefore possible that we did not capture the most
sensitive exposure window for certain elements. Our use
of a single spot urine sample also has limitations, as this
may reflect only very recent exposure for some metals
[91]. Finally, since BVCKMR requires a minimum of
three measurements per participant, the current study
was restricted to a relatively small number of partici-
pants (N=176 for this study, compared with N =1363
for the full Rhea cohort). Although urinary metals did
not differ between participants and non-participants, the
participants in the current analysis were older and more
educated on average. There were also small but statisti-
cally significant differences in some of the child BP
measures. We therefore cannot rule out the possibility
of selection bias. Focusing on this restricted set of
participants may have also limited statistical power, par-
ticularly for the analyses investigating elevated BP at age
11. Future studies which pool data across multiple
cohorts may therefore be informative.

Conclusions

Our findings suggest that high concentrations of Mo
(>40-80 pg/L) combined with Pb may increase BP in
early childhood, contributing to elevated BP in adoles-
cence. Although we also identified possible longitudinal
effects of Co and Mg (in the context of a complex
mixture) on child BP, results for these metals were null
when using more traditional approaches and will require
additional investigation. Our findings for Mo and Pb have
important public health implications, as high BP in child-
hood and adolescence is predictive of hypertension and
CVD in adulthood [2]. Identifying major sources of Mo
and Pb exposures in this population is therefore essential.
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