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COMMENTARY

Commentary: Novel strategies and new tools 
to curtail the health effects of pesticides
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Daniele Mandrioli3, Michael N. Antoniou6, Paul Winchester7 and Robin Mesnage6 

Abstract 

Background:  Flaws in the science supporting pesticide risk assessment and regulation stand in the way of pro-
gress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing 
protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible 
information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate 
published results in the risk assessment process, and failure to take advantage of new scientific opportunities and 
advances, e.g. biomonitoring and “omics” technologies.

Recommended Actions:  Problems in pesticide risk assessment are identified and linked to study design, data, and 
methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge 
of pesticide toxicity, exposures, and risks.

We propose four solutions:

(1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying 
more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology 
studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manu-
facturers to public agencies.

(2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contempo-
rary exposures.

(3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that 
produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to 
quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children.

(4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New 
genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and 
should be included more routinely in risk assessment to effectively prevent disease.

Conclusions:  Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will 
require changes in policy and risk assessment procedures, more science free of industry influence, and innovative 
strategies that blend traditional methods with new tools and mechanistic insights.
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Background
Today’s near-total dependence on pesticides for weed, 
insect, and pathogen control on conventionally man-
aged farms is likely unsustainable. Steadily rising pesti-
cide expenditures reduce net returns to farmers. Heavy 
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pesticide use imposes collateral damage on farmers and 
workers, the environment, and public health that can 
become unacceptable as a result of direct costs; fines, 
penalties, or more costly insurance; regulation; social 
pressure or local controls. Examples of such damage 
include crop and tree losses due to dicamba and other 
herbicide drift [1, 2], reduced biodiversity [3–6], dimin-
ished ecosystem services [7, 8], pollinator decline [8, 9], 
acute poisonings [9], the emergence and spread of resist-
ant weeds [10] and insects [11], loss of vital drugs needed 
to treat human infections [12], and water contamination 
[13, 14].

Although the human health impacts stemming from 
exposure to pesticides are not fully known or understood, 
an increasing number of studies describe adverse effects 
following acute occupational exposures [9], heightened 
risk of cancer [15–18], and residential proximity to farms 
heavily reliant on pesticides [19, 20].

In the US, European Union, and other developed coun-
tries, pesticides undergo an evaluation of their environ-
mental and human health effects before they are placed 
on the market. However, current regulatory systems have 
often failed to detect and/or mitigate some of the health 
effects triggered by pesticides. Examples include damage 
to the neurological system and brain from chlorpyrifos 
and other organophosphates [19, 21], the impact of expo-
sures to glyphosate-based herbicides on non-Hodgkin 
lymphoma [15, 22, 23], and adverse reproductive impacts 
of multiple pesticides [24, 25]. These failures to detect 
and prevent adverse health outcomes arise from systemic 
shortcomings in how regulators, industry and public 
health professionals assess pesticide risks and strive to 
mitigate them. Because of these shortcomings, problems 
can linger for years, as in the case of:

•	 The role paraquat has played in the etiology of Par-
kinson’s disease [26–28],

•	 Impacts of prenatal exposures to glyphosate-based 
herbicide on preterm births [24, 29], the gut micro-
biome [30], and non-alcoholic fatty liver disease [31, 
32], and

•	 Exposures leading to autism and autoimmune dis-
eases [20, 33].

In some of the cases cited above, substantial evidence 
of toxicity and significant human risk had been published 
many years, or even decades before the EPA or other 
regulators acted to restrict use and exposures [34]. Other 
shortcomings stem from the limited set of tools regula-
tors utilize to quantify and mitigate risks arising from 
how pesticides are actually used in the real world, in con-
trast to how pesticides are supposed to be used in accord 
with label directions [35].

The science supporting pesticide risk assessment and 
regulation has been reviewed critically in recent years [36, 
37]. After providing an overview of the most consequential 
problems in how pesticides are used and risks are managed 
in the US and other countries, we propose strategies to:

•	 Deepen scientific knowledge of adverse pesticide 
impacts,

•	 Build trust in regulatory risk assessments, and
•	 Broaden support for steps to reduce overall reliance 

on pesticides, and especially use of high-risk pesti-
cides.

The paper focuses predominately on shortcomings 
and challenges confronting pesticide risk assessors and 
regulators in the US and the European Union. In general, 
these countries follow guidelines and testing principles 
from the Organization for Economic Co-operation and 
Development (OECD). Our recommendations are likely 
to apply to other OECD countries, and to developing 
countries with regulations that draw upon OECD stand-
ards, e.g. members of the Economic Community of West 
African States (ECOWAS) [38]. Progress in the sciences 
and policies governing pesticide use has potential to sup-
port reductions in the adverse public health impact of 
pesticide use in other parts of the world where the need 
for significant reductions in the frequency of high-expo-
sure episodes is more acute.

Flaws in the science supporting pesticide risk 
assessment and regulation
Formulation chemistry matters
Pesticide formulation chemistry is a complex interplay of 
different ingredients at varying concentrations. Formula-
tions directly impact product effectiveness, environmen-
tal fate, and risk profiles. Applications via specialized 
spray equipment, as part of regional pest management 
systems, or on particular soils can require different for-
mulations for optimal efficacy [39]. Some formulations 
allow the mixing of pesticides with liquid fertilizers, so 
one pass through a field can accomplish multiple tasks.

So-called “inert ingredients” in formulated herbicides 
enhance adhesion and allow herbicides to move more 
quickly through the epidermis of weeds. They help reduce 
drift and prevent clogged nozzles. Some surfactants also 
markedly enhance toxicity to non-target organisms [40] 
and human-health risks [41]. Applicator exposure epi-
sodes leading to glyphosate doses high enough to trigger 
ocular damage [42], skin irritation [43], non-Hodgkin 
lymphoma [15], and gastrointestinal disorders [44, 45] 
were not due to glyphosate alone, but to the glyphosate 
plus surfactants in formulated commercial products (e.g. 
MON 0818 for Roundup MON 2139) [41, 46, 47].



Page 3 of 13Benbrook et al. Environ Health           (2021) 20:87 	

But regulatory reviews largely ignore the impacts of 
co-formulants. In the US, nearly all pesticide risk assess-
ments are based on studies done on the nearly pure 
“active ingredients” — “active” in the sense that they are 
responsible for the desired impact on weeds, insects, plant 
diseases, rodents, or other pests. But when applied in the 
field, nearly all pesticides are complex mixtures with mul-
tiple adjuvants and surfactants and an active ingredient. 
Many pesticide products contain more than one active 
ingredient, and some up to three, as in the case of Expert® 
herbicide that includes a mix of S-metolachlor, atrazine 
and glyphosate (EPA Reg. No. 100–1161) [48].

In the past decade, published data have confirmed what 
regulators and industry have known for years: substantial 
differences exist in the risk profile of pesticide active ingre-
dients in contrast to the formulated products containing 
them. These differences alter environmental fate, metabo-
lism, and excretion [41]. This is clearly the case with the 
world’s leading herbicide glyphosate in  vivo in rats [47, 
49] or in vitro in human cells [46], and for the most widely 
used family of insecticides (neonicotinoids) [50, 51].

Moreover, current US and EU law allows pesticide reg-
istrants to claim that the formula of commercial prod-
ucts are confidential business information. Hence, there 
is often no way to know what is in a given end-use pes-
ticide. In the case of glyphosate, hundreds of products 
containing glyphosate are available in the US. These 
products have different names, although they can have 
the same, or very similar composition. They are often 
marketed under alternate names when sold in another 
country. Herbicide manufacturers use a trade name (e.g. 
Roundup) and unique formulation number (e.g. MON 
2139) to accurately identify and link a product back to its 
confidential statement of formula. But the internal for-
mulation number and its contents and concentrations are 
rarely disclosed [41]. Farmers and scientists cannot be 
expected to understand and manage efficacy issues and 
pesticide risks without detailed and specific information 
on what is in the products actually applied.

Occupational exposures are an afterthought
Applicators, farmworkers and those occupationally 
exposed, or living near treated fields, face heightened 
risks compared to the general public, as is apparent in 
most pesticide human health risk assessments completed 
by the EPA (e.g. glyphosate [52], paraquat [53], or chlor-
pyrifos [54]). There are many causes of this emerging 
environmental justice issue:

•	 Much less rigorous focus on the exposure data avail-
able to quantify occupational exposures, especially in 
contrast to dietary exposures,

•	 Highly questionable data supporting estimates of 
dermal absorption rates derived predominately from 
studies using pure active ingredients rather than for-
mulated products,

•	 The assumptions that: (a) all required personal pro-
tective equipment will be appropriate to achieve the 
hoped-for reduction in exposure, in good working 
order, and properly utilized, and (b) all requirements, 
precautions, and warnings will be adhered to, and

•	 The generally higher risks deemed acceptable by 
regulators when farmworkers and applicators are 
exposed to pesticides, in contrast to the general pub-
lic.

Applicator, farm worker, and other bystander and occu-
pational exposures and risks are presumptively man-
aged by changing use rates or application methods, by 
imposing incrementally more Personal Protective Equip-
ment (PPE), via engineering controls, or other measures. 
Requiring more PPE may work on paper, but often falls 
short in practice [33]. Applicators of high-risk pesticides 
are often unable or not willing to comply with all existing 
PPE and use directions requirements, or do so inappro-
priately, undercutting the reductions in exposures pro-
jected by regulators [55].

The science supporting current applicator and mixer-
loader exposure and risk assessments is plagued by poor 
data (e.g. exposure estimates from models estimating 
the impacts of various combinations of PPE, rather than 
direct measurements) and methodological flaws (incor-
rect dermal absorption rates, studies based on pure active 
ingredients rather than formulations). Actual exposures 
derived from field-level biomonitoring studies are often 
far higher than what the EPA has estimated [56]. This is 
especially true in the case of applicators spraying pesti-
cides with handheld and backpack sprayers [57, 58]. A 
person applying one pound of pesticide active ingredient 
in a 6-h workday using handheld equipment will almost 
always experience tenfold to 100-fold higher exposure 
than the operator of a modern pesticide sprayer who sits 
in a glass-steel cab and sprays 1,000  lb of pesticide in a 
day [59].

Deficiencies and gaps in the data supporting applica-
tor and occupational risk assessment give rise to systemic 
underestimation of worker exposures and risk. Estimates 
of typical rates of dermal absorption for many pesticides 
are too low [60, 61]. The pesticide industry prefers to 
use, and regulators have unfortunately accepted, non-
viable skin-based penetration assays that underestimate 
actual rates [62]. Additionally for most pesticides, dermal 
absorption rates are derived from studies of pure active 
ingredient, while in the field, exposures always occur to 
formulated pesticides containing surfactants, many of 
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which enhance dermal penetration [63]. Pesticide manu-
facturers are aware of this, but have generally not taken 
the actions needed to sharpen the accuracy of applica-
tor and worker risk assessments. A common explanation 
from registrants is that they comply with all requirements 
imposed on them by regulators.

The EPA and EU regulators have begun asking regis-
trants to carry out exposure-route specific toxicity tests 
to set Points of Departure (POD) for risk assessments. 
A POD is typically the Lowest Observed Adverse Effect 
Level (LOAEL) in an animal assay. Regulators then try to 
assure that exposure levels in a day will be at least 100-
fold or more lower than the estimated POD. But when 
the EPA accepts a toxicity study done in an animal model 
that entails treatments with a pure active ingredient 
rather than the formulated products, unrealistically high 
PODs can result, further separating applicator and occu-
pational risk assessments from real-world conditions. 
Similar sources of uncertainty arise in the way worker 
risks are evaluated in other countries. Estimates are often 
based solely or largely on data generated and submitted 
by registrants.

Evaluating real‑life exposure scenarios
Most pesticide toxicology data requirements rely on out-
dated testing methods that either originated from or have 
been influenced by guidelines issued by the OECD [64]. 
The core toxicology tests required by the EPA, EU, and 
most other regulatory authorities focus almost exclu-
sively on pure active ingredients. Most methods dose 
adult animals up to a Maximum Tolerated Dose (MTDs). 
This provides vital information for hazard classification. 
However, pesticide doses to which human populations 
are exposed in the environment (e.g. via diet) are much 
lower, with the possible exception of some applicator 
exposure episodes entailing use of handheld or backpack 
sprayers and little or no PPE.

Current risk assessment methods are based, for the 
most part, on the assumption that the severity of toxic 
effects at low environmental doses can be approximated 
using linear extrapolations from effects measured at 
higher doses. A large number of studies have now dem-
onstrated that this is not true for hormonal effects [65, 
66].

Likewise, conventional pesticide risk assessment does 
not adequately consider the impacts of exposures in early 
fetal development when the timing of exposure may be 
as important, or even more important, than dose [67]. 
Moreover, OECD guideline studies are not designed or 
able to detect some cancers with long latency periods nor 
neural decline, and other diseases that typically become 
evident later in life [68]. OECD testing protocols are 
especially limited in their ability to detect adverse health 

impacts stemming from low-level chronic exposures, and 
from periodic high-level exposures among people mix-
ing, loading and applying pesticides, or working or living 
in or near heavily treated fields.

New strategies for assessing low-dose, non-linear and 
early developmental toxicity have been developed. These 
include the use of high-throughput technologies known 
as ‘omics’ methods (metabolomics, transcriptomics, 
genomics, metagenomics, or even epigenomics). These 
methods allow the monitoring of multiple biomarkers 
and can identify metabolic perturbations that typically 
remain undetected despite full compliance with current 
regulatory test requirements (Table 1). This was the case 
in a recent study of a mixture of six pesticides frequently 
detected in foodstuffs [69].

While standard histopathology and serum biochem-
istry measures revealed few effects, the combination of 
high-throughput omics revealed the activation of stress-
response pathways. Metabolomics or RNA sequencing of 
sensitive tissues or in urine or blood can also be deployed 
to identify biomarkers and predict the risk of long-
term health effects from pesticide exposures (Table  1). 
For instance, exposure to complex pesticide mixtures 
induces specific modifications of metabolism in pregnant 
women [80]. The profiling of small RNA in urine sam-
ples from individuals who ingested high doses of para-
quat or glyphosate identified acute kidney injury [106]. In 
another study, small RNAs in urine were associated with 
organophosphate metabolites in farmworkers [107]. It 
was even hypothesized that small RNA could provide a 
link between exposure to pesticides and the development 
of Parkinson’s disease [108]. Novel mechanistic assays 
have also been developed to allow the identification of 
key characteristics of human carcinogens [109].

Reliance in risk assessments on industry‑sponsored 
studies versus published studies by scientist not funded 
by or affiliated with pesticide manufacturers
The majority of studies considered by pesticide regula-
tors are undertaken in compliance with Good Labora-
tory Practice (GLP) guidelines [110]. GLPs are intended 
to ensure consistency and reliability in laboratory test-
ing. Studies that do not adhere to stated GLP guidelines, 
but are otherwise sound, are typically not considered or 
are given little weight in “weight of the evidence” judge-
ments. This bias against published, non-GLP studies 
excludes consideration of mechanistic insights from 
genomic analyses (see Table 1 for an overview of emerg-
ing genomic tools that can support pesticide risk assess-
ment) [111, 112].

The EPA’s assessment of glyphosate oncogenicity is 
a good example of the pitfalls inherent in relying on 
industry-supported, GLP-compliant toxicology studies 



Page 5 of 13Benbrook et al. Environ Health           (2021) 20:87 	

Ta
bl

e 
1 

M
ul

tip
le

 O
m

ic
 la

ye
rs

 a
re

 a
va

ila
bl

e 
to

 s
er

ve
 b

ot
h 

as
 a

n 
ex

po
su

re
 a

nd
 h

ea
lth

 o
ut

co
m

e 
bi

om
ar

ke
rs

. O
th

er
 o

m
ic

s 
m

et
ho

ds
 s

uc
h 

as
 g

ly
co

m
ic

s 
or

 n
cR

N
om

ic
s 

ha
ve

 b
ee

n 
us

ed
 

to
 u

nd
er

st
an

d 
hu

m
an

 h
ea

lth
 b

ut
 th

ey
 h

av
e 

no
t b

ee
n 

ex
te

ns
iv

el
y 

us
ed

 in
 to

xi
co

lo
gy

O
m

ic
s

Id
en

tifi
ed

 h
ea

lth
 h

az
ar

ds
Id

en
tifi

ed
 h

ar
m

fu
l e

xp
os

ur
e

Pr
ed

ic
te

d 
he

al
th

 o
ut

co
m

es

Tr
an

sc
rip

to
m

ic
s

RN
A 

tr
an

sc
rip

ts
▪ 

G
en

ot
ox

ic
ity

: I
n 

vi
tr

o 
tr

an
sc

rip
tio

na
l s

ig
na

tu
re

s 
cl

as
si

fy
 a

ge
nt

s 
as

 g
en

ot
ox

ic
 o

r n
on

-g
en

ot
ox

ic
 in

 
hu

m
an

 ly
m

ph
ob

la
st

oi
d 

TK
6 

ce
lls

 [7
0]

▪ 
En

do
cr

in
e 

di
sr

up
tio

n:
 A

 G
en

e 
Ex

pr
es

si
on

 B
io

m
ar

ke
r 

A
cc

ur
at

el
y 

Pr
ed

ic
ts

 E
st

ro
ge

n 
Re

ce
pt

or
 α

 M
od

ul
a-

tio
n 

in
 b

re
as

t c
an

ce
r M

C
F-

7 
ce

lls
 [7

1]
▪ 

To
xi

ci
ty

 p
oi

nt
 o

f d
ep

ar
tu

re
: R

at
 li

ve
r t

ra
ns

cr
ip

tio
na

l 
si

gn
at

ur
es

 in
 a

 s
ho

rt
-t

er
m

 e
xp

os
ur

e 
ca

n 
es

tim
at

e 
a 

to
xi

ci
ty

 p
oi

nt
 o

f d
ep

ar
tu

re
 fo

r l
on

ge
r-

te
rm

 e
ffe

ct
s 

[7
2]

▪ 
To

ba
cc

o 
sm

ok
in

g:
 S

m
ok

in
g-

re
la

te
d 

ge
ne

 e
xp

re
ss

io
n 

si
gn

at
ur

es
 c

an
 b

e 
de

te
ct

ed
 in

 w
ho

le
-b

lo
od

 [7
3]

▪ 
M

et
fo

rm
in

 u
se

: T
ra

ns
cr

ip
to

m
e 

si
gn

at
ur

es
 id

en
tif

y 
m

et
fo

rm
in

 u
se

 a
nd

 d
is

cr
im

in
at

e 
be

tw
ee

n 
m

et
-

fo
rm

in
 re

sp
on

de
rs

 a
nd

 n
on

-r
es

po
nd

er
s, 

ex
pl

ai
ni

ng
 

va
ria

nc
e 

in
 th

er
ap

eu
tic

 e
ffi

ca
cy

 [7
4]

▪ 
N

on
al

co
ho

lic
 fa

tt
y 

liv
er

 d
is

ea
se

: H
ep

at
ic

 tr
an

sc
rip

to
m

e 
sig

na
tu

re
s p

re
di

ct
 d

ise
as

e 
pr

og
re

ss
io

n 
in

 p
at

ie
nt

s w
ith

 
va

ry
in

g 
de

gr
ee

s o
f l

iv
er

 d
ise

as
es

 [7
5]

▪ 
Ca

nc
er

 p
ro

gn
os

tic
. A

 g
en

e 
ex

pr
es

si
on

 s
ig

na
tu

re
 s

up
-

po
rt

s 
ph

ys
ic

ia
ns

’ t
re

at
m

en
t d

ec
is

io
ns

 in
 a

 p
op

ul
at

io
n 

w
ith

 e
ar

ly
 b

re
as

t c
an

ce
r [

76
]

▪ 
Tu

m
or

 ti
ss

ue
 o

rig
in

: T
ra

ns
cr

ip
tio

na
l s

ig
na

tu
re

s 
ca

n 
he

lp
 

id
en

tif
y 

th
e 

tis
su

e 
of

 o
rig

in
 fo

r m
et

as
ta

tic
 c

an
ce

rs
 [7

7]

M
et

ab
ol

om
ic

s
sm

al
l m

ol
ec

ul
es

▪ 
G

ut
 m

ic
ro

bi
om

e 
al

te
ra

tio
ns

: C
ae

cu
m

 m
et

ab
ol

ite
s 

le
ve

ls
 re

fle
ct

 s
hi

ki
m

at
e 

pa
th

w
ay

 in
hi

bi
tio

n 
by

 th
e 

he
rb

ic
id

e 
gl

yp
ho

sa
te

 in
 th

e 
ra

t g
ut

 [3
0]

▪ 
Im

pr
ov

ed
 to

xi
ci

ty
 p

re
di

ct
io

ns
: R

es
ul

ts
 o

f 9
0-

da
y 

ra
t 

to
xi

ci
ty

 s
tu

di
es

 c
an

 b
e 

pr
ed

ic
te

d 
us

in
g 

m
et

ab
o-

lo
m

e 
da

ta
 o

f 2
8 

da
y 

st
ud

ie
s 

[7
8]

▪ 
In

 v
iv

o 
to

xi
ci

ty
 fr

om
 in

 v
itr

o 
as

sa
ys

: L
iv

er
 to

xi
ci

ty
 

m
ec

ha
ni

sm
s 

ca
n 

be
 p

re
di

ct
ed

 fr
om

 m
et

ab
ol

ite
 

pr
ofi

le
s 

of
 H

ep
G

2 
ce

lls
 [7

9]

▪ 
Pe

st
ic

id
es

: A
n 

ex
po

su
re

 to
 c

om
pl

ex
 p

es
tic

id
e 

m
ix

tu
re

s 
in

du
ce

s 
m

od
ifi

ca
tio

ns
 o

f m
et

ab
ol

ic
 

fin
ge

rp
rin

ts
 in

 p
re

gn
an

t w
om

en
 a

cc
or

di
ng

 to
 th

e 
in

te
ns

ity
 o

f a
gr

ic
ul

tu
ra

l c
er

ea
l a

ct
iv

iti
es

 [8
0]

▪ 
H

ea
vy

 m
et

al
s: 

U
rin

ar
y 

m
et

ab
ol

ite
 p

ro
fil

es
 c

ou
ld

 
re

fle
ct

 a
rs

en
ic

 in
te

rn
al

 d
os

e-
re

la
te

d 
bi

oc
he

m
ic

al
 

al
te

ra
tio

ns
 [8

1]
▪ 

D
D

E 
an

d 
H

CB
: C

irc
ul

at
in

g 
le

ve
ls

 o
f 1

6 
m

et
ab

ol
ite

s 
re

la
te

d 
to

 li
pi

d 
m

et
ab

ol
is

m
 re

fle
ct

 p
,p

’-D
D

E 
an

d 
H

C
B 

ex
po

su
re

 in
 h

um
an

s 
[8

2]

▪ 
Al

l-c
au

se
 m

or
ta

lit
y:

 A
 s

et
 o

f 1
4 

m
et

ab
ol

ite
s 

ac
t a

s 
pr

ed
ic

to
rs

 o
f l

on
g-

te
rm

 m
or

ta
lit

y 
in

 th
e 

ci
rc

ul
at

io
n 

of
 

44
,1

68
 in

di
vi

du
al

s 
[8

3]
▪ 

Br
ea

st
 c

an
ce

r: 
M

et
ab

ol
ite

s 
sh

ow
 p

ot
en

tia
l a

s 
bi

om
ar

k-
er

s 
fo

r e
ar

ly
 d

ia
gn

os
is

 o
f b

re
as

t c
an

ce
r, 

pr
ed

ic
tin

g 
tu

m
or

 s
iz

e 
an

d 
ho

rm
on

e 
re

ce
pt

or
 e

xp
re

ss
io

n 
[8

4]
▪ 

N
eu

ro
de

ge
ne

ra
tio

n:
 B

lo
od

 li
pi

ds
 id

en
tif

y 
an

te
ce

de
nt

 
m

em
or

y 
im

pa
irm

en
t a

nd
 c

an
 a

ct
 a

s 
di

ag
no

st
ic

 to
ol

s 
fo

r e
ar

ly
 n

eu
ro

de
ge

ne
ra

tio
n 

of
 p

re
cl

in
ic

al
 A

lz
he

im
er

’s 
di

se
as

e 
[8

5]

G
en

om
ic

s
ge

no
m

e 
se

qu
en

ce
▪ 

Su
sc

ep
tib

ili
ty

 to
 c

he
m

ic
al

 to
xi

ci
ty

: R
es

po
ns

e 
to

 
ch

em
ic

al
 e

xp
os

ur
e 

in
 g

en
et

ic
al

ly
 h

et
er

og
en

eo
us

 
ze

br
afi

sh
 c

an
 h

el
p 

el
uc

id
at

e 
ge

ne
-e

nv
iro

nm
en

t 
in

te
ra

ct
io

ns
 [8

6]

N
ot

 a
pp

lic
ab

le
▪ 

Va
ria

tio
ns

 in
 d

ise
as

e 
ris

ks
: G

en
om

e-
w

id
e 

po
ly

ge
ni

c 
sc

or
es

 c
an

 id
en

tif
y 

in
di

vi
du

al
s 

at
 h

ig
h 

ris
k 

fo
r fi

ve
 

co
m

m
on

 d
is

ea
se

s 
[8

7]

M
et

ag
en

om
ic

s 
m

ic
ro

bi
al

 c
om

m
un

iti
es

▪ 
M

ic
ro

bi
om

e 
dr

ug
 m

et
ab

ol
ism

. I
nt

er
pe

rs
on

al
 d

iff
er

-
en

ce
s 

in
 d

ru
g 

m
et

ab
ol

is
m

 c
an

 b
e 

id
en

tifi
ed

 b
y 

hi
gh

-t
hr

ou
gh

pu
t g

en
et

ic
 a

na
ly

se
s 

of
 g

ut
 m

ic
ro

bi
-

om
es

 [8
8]

▪ 
M

el
am

in
e 

to
xi

ci
ty

: M
el

am
in

e-
in

du
ce

d 
re

na
l t

ox
ic

ity
 

de
pe

nd
s 

on
 th

e 
ex

ac
t c

om
po

si
tio

n 
an

d 
m

et
ab

ol
ic

 
ac

tiv
iti

es
 o

f t
he

 g
ut

 m
ic

ro
bi

ot
a 

[8
9]

▪ 
Pe

rs
on

al
ise

d 
re

sp
on

se
s t

o 
di

et
: T

he
 c

om
po

si
tio

n 
of

 
th

e 
gu

t m
ic

ro
bi

om
e 

pr
ed

ic
ts

 p
er

so
na

lis
ed

 g
ly

ce
-

m
ic

 re
sp

on
se

s 
to

 fo
od

 [9
0]

▪ 
H

ea
vy

 m
et

al
s: 

Ra
ts

 e
xp

os
ed

 d
ai

ly
 to

 a
rs

en
ic

, c
ad

-
m

iu
m

, c
ob

al
t, 

ch
ro

m
iu

m
, n

ic
ke

l d
is

pl
ay

 c
ha

ng
es

 to
 

m
ic

ro
bi

ot
a 

co
m

po
si

tio
n 

w
hi

ch
 c

an
 h

el
p 

id
en

tif
yi

ng
 

ex
po

su
re

s 
to

 s
pe

ci
fic

 h
ea

vy
 m

et
al

s 
[9

1]

▪ 
Ca

rd
io

m
et

ab
ol

ic
 h

ea
lth

: G
ut

 m
ic

ro
bi

om
e 

co
m

po
si

tio
n 

is
 p

re
di

ct
iv

e 
fo

r c
ar

di
om

et
ab

ol
ic

 b
lo

od
 m

ar
ke

rs
 in

 
1,

09
8 

de
ep

ly
 p

he
no

ty
pe

d 
in

di
vi

du
al

s 
[9

2]
▪ 

Ci
rr

ho
sis

: G
ut

 m
ic

ro
bi

om
e 

sp
ec

ie
s 

ca
n 

be
 a

 n
on

-
in

va
si

ve
 d

ia
gn

os
tic

 te
st

 fo
r c

irr
ho

si
s 

[9
3]

Ep
ig

en
om

ic
s

D
N

A 
m

od
ifi

ca
tio

ns
 a

nd
 c

hr
om

at
in

 st
ru

ct
ur

e
▪ 

Tr
an

sg
en

er
at

io
na

l i
nh

er
ita

nc
e:

 T
he

 s
tu

dy
 o

f e
pi

-
ge

no
m

es
 a

nd
 c

hr
om

at
in

 a
cc

es
si

bi
lit

y 
in

fo
rm

ed
 

on
 tr

an
sg

en
er

at
io

na
l i

nh
er

ita
nc

e 
af

te
r a

nc
es

tr
al

 
pe

rin
at

al
 o

be
so

ge
n 

ex
po

su
re

 [9
4]

▪ 
Ti

ss
ue

 su
sc

ep
tib

ili
ty

: E
pi

ge
ne

tic
 m

ar
ks

 d
et

er
m

in
e 

di
ffe

re
nt

ia
l t

is
su

e 
su

sc
ep

tib
ili

ty
 to

 tu
m

or
ig

en
es

is
 

in
du

ce
d 

by
 1

,3
-b

ut
ad

ie
ne

 [9
5]

▪ 
M

at
er

na
l s

m
ok

in
g:

 E
pi

ge
ne

tic
 c

ha
ng

es
 in

 re
sp

on
se

 
to

 m
at

er
na

l s
m

ok
in

g 
in

 p
re

gn
an

cy
 p

er
si

st
 in

to
 la

te
r 

ch
ild

ho
od

 [9
6]

▪ 
Ai

r p
ol

lu
tio

n:
 D

N
A

 m
et

hy
la

tio
n 

re
pr

og
ra

m
m

in
g 

af
te

r 
pr

en
at

al
 e

xp
os

ur
e 

to
 a

ir 
po

llu
tio

n 
w

as
 a

ss
oc

ia
te

d 
w

ith
 m

ar
ke

rs
 o

f c
ar

di
ov

as
cu

la
r r

is
k 

in
 c

hi
ld

ho
od

 
[9

7]

▪ 
D

ea
th

 ri
sk

: S
ite

-s
pe

ci
fic

 b
lo

od
 D

N
A

 m
et

hy
la

tio
n 

si
te

s 
pr

ed
ic

t d
ea

th
 ri

sk
 in

 a
 lo

ng
itu

di
na

l s
tu

dy
 o

f 1
2,

30
0 

in
di

vi
du

al
s 

[9
8]

▪ 
Co

lo
re

ct
al

 c
an

ce
r: 

A
 p

an
el

 o
f D

N
A

 m
et

hy
la

tio
n 

bi
o-

m
ar

ke
rs

 in
 p

er
ip

he
ra

l b
lo

od
 c

ou
ld

 p
re

di
ct

 c
ol

or
ec

ta
l 

ca
nc

er
 s

us
ce

pt
ib

ili
ty

 [9
9]

Pr
ot

eo
m

ic
s

Pr
ot

ei
ns

 a
nd

 p
ep

tid
es

▪ 
Se

x 
di

ffe
re

nc
es

: P
ro

te
om

ic
s 

w
as

 u
se

d 
to

 d
et

ec
t s

ex
-

re
la

te
d 

di
ffe

re
nc

es
 in

 e
ffe

ct
s 

of
 to

xi
ca

nt
s 

[1
00

]
▪ 

D
ru

g 
to

xi
ci

ty
 p

re
di

ct
io

n:
 p

ro
te

om
ic

 s
ig

na
tu

re
s 

as
so

ci
-

at
e 

w
ith

 h
ep

at
oc

el
lu

la
r s

te
at

os
is

 in
 ra

ts
 [1

01
]

▪ 
Ra

di
at

io
n 

in
ju

ry
: c

om
pa

ra
tiv

e 
pr

ot
eo

m
ic

 a
llo

w
ed

 
th

e 
di

sc
ov

er
y 

of
 n

ew
 ra

di
at

io
n 

bi
om

ar
ke

rs
 [1

02
]

▪ 
H

ea
vy

 m
et

al
s: 

A
 p

an
el

 o
f s

ix
 p

ro
te

in
s 

w
as

 p
ro

po
se

d 
to

 s
er

ve
 a

s 
m

ar
ke

r o
f o

cc
up

at
io

na
l e

xp
os

ur
es

 to
 

ar
se

ni
c,

 c
ad

m
iu

m
, a

nd
 le

ad
 [1

03
]

▪ 
H

ea
lth

 a
nd

 li
fe

 sp
an

: A
 7

6-
pr

ot
ei

n 
pr

ot
eo

m
ic

 a
ge

 
si

gn
at

ur
e 

pr
ed

ic
te

d 
ch

ro
ni

c 
di

se
as

es
 a

nd
 a

ll-
ca

us
e 

m
or

ta
lit

y 
in

 9
97

 in
di

vi
du

al
s 

be
tw

ee
n 

21
 a

nd
 

10
2 

ye
ar

s 
of

 a
ge

 [1
04

]
▪ 

Ca
nc

er
: D

iff
er

en
tia

lly
 e

xp
re

ss
ed

 s
er

um
 p

ro
te

in
s 

co
ul

d 
be

 u
se

d 
fo

r e
ar

ly
 d

ia
gn

os
is

 a
nd

 p
at

ho
ge

ni
c 

in
ve

st
ig

a-
tio

n 
of

 N
on

-H
od

gk
in

 ly
m

ph
om

a 
[1

05
]



Page 6 of 13Benbrook et al. Environ Health           (2021) 20:87 

[59, 113]. The EPA determined in 2015 that glyphosate 
is “not likely to be carcinogenic to humans.” This finding 
contrasted with the “probably carcinogenic to humans” 
Group 2A classification issued by the International 
Agency for Research on Cancer (IARC), also in 2015 [23, 
114]. Why the difference?

In the most recent cycle of reregistration of glyphosate-
based herbicides in both the US and EU, regulators relied 
mostly on industry-conducted, GLP-compliant glypho-
sate genotoxicity assays, of which about 1% reported a 
positive result. Over one-half of these assays were bacte-
rial mutation assays which are known to have a limited 
sensitivity [115]. The IARC glyphosate Working Group 
placed heavy weight on the nearly three-quarters of pub-
lished glyphosate genotoxicity studies that reported one 
or more positive assays [59, 114].

Industry genotoxicity studies reporting no evidence of 
genotoxicity were mostly done in the 1980s and 1990s, 
while most positive published studies were done since 
2000 and were conducted with generally more sensitive 
assay systems. Over 90% of the glyphosate genotoxicity 
assays conducted since completion of the IARC glypho-
sate monograph have reported one or more positive 
assays [116]. IARC placed heavy weight on in vivo stud-
ies with formulated glyphosate-based herbicides (GBHs), 
including three studies in human populations exposed 
as a result of aerial spraying that reported evidence of 
genotoxicity in exposed people compared to people living 
nearby who were not exposed.

Other examples of substantial gaps between the find-
ings of industry-sponsored GLP studies and published 
studies conducted by university-based scientists include 
studies on the endocrine disrupting effects of endosul-
fan [117, 118], the reproductive impacts of the synthetic 
pyrethroid insecticides [39, 119], and the developmental 
toxicity of chlorpyrifos [68, 120].

Multiple concurrent exposures and vulnerable populations
Another shortcoming with traditional toxicology test-
ing — which examines each pesticide in isolation — is 
that no one is exposed to just one pesticide, nor are peo-
ple exposed only to pesticides [121]. Biomonitoring data 
generated in the US by the Centers for Disease Control 
and Prevention demonstrate that in recent years more 
than 90% of Americans have a few to several pesticides 
and/or pesticide metabolites in their body on any given 
day [122, 123], as well as several other chemicals, e.g. 
metals, furans, polycyclic aromatic hydrocarbons, plasti-
cizers such as phthalates and bisphenols, or brominated 
and fluorinated chemicals [124]. Some can accumu-
late in a variety of human tissues, others can be found 
in breast milk [125] and pass via the placenta into the 
fetus [126].

Pesticide biomonitoring data has been published 
reporting the frequency and levels of pesticide analytes in 
human urine [124, 127–129]. Expanded EU investments 
in biomonitoring will produce additional data to support 
refined exposure and risk assessments and epidemiologi-
cal analyses [130].

Further complications in pesticide risk assessment arise 
as a result of the well-known fact that not all members of 
exposed populations are equally vulnerable to pesticides. 
A variety of genetic polymorphisms, health conditions, 
and drug therapies render segments of the population 
more vulnerable following exposure to certain pesticides 
[131]. Since the enzyme paraoxonase 1 hydrolyzes most 
organophosphorus insecticides in plasma and the liver, 
its activity, or lack thereof in some people, modulates 
organophosphate toxicity by an order of magnitude, and 
for some people, up to two orders of magnitude [132, 
133]. Low paraoxonase status increases susceptibility to 
disruption in children’s neurobehavioral development 
[134, 135]. Maternal levels of chlorpyrifos coupled with 
low maternal PON1 activity were associated with a sig-
nificant reduction in head circumference in their off-
spring [136].

Dietary factors such as malnutrition and vitamin defi-
ciency can enhance the toxic effects of some pesticides. A 
recent animal study suggested that chronic vitamin defi-
ciency can influence the toxicity of a pesticide mixture 
[137]. Another study showed that neonicotinoids and 
nutritional stress can act synergistically to reduce sur-
vival of honey bees [138]. Epidemiological studies clearly 
indicate that agricultural workers exposed to pesticides 
are subject to damaging oxidative stress and this stress 
can activate antioxidant responses [139]. Further stud-
ies are needed to determine whether and to what extent a 
person’s nutritional status can influence the development 
of pathologies after pesticide exposures.

People living in farming areas, in buildings sprayed for 
insects, or near golf courses experience added exposures. 
Multiple pesticides with endocrine disrupting activity 
have been found in public playgrounds and schoolyards 
in agricultural areas [140]. People mixing and loading 
pesticides and applying them are by far the most heav-
ily exposed [141], especially those using handheld, back-
pack, or ATV-mounted sprayers [37, 57, 116], yet no 
product labels have warnings addressed to more highly 
exposed occupational users, nor pregnant women or 
individuals currently receiving chemotherapy. In the US, 
many plaintiffs in the Roundup-non-Hodgkin litigation 
continued to spray Roundup post NHL diagnosis and 
between rounds of chemotherapy and/or stem cell trans-
plants. When asked why by counsel, some testified that 
no one alerted them to the need to avoid future expo-
sures to possibly cancer-causing chemicals.
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Current EPA and EU pesticide risk assessment pro-
tocols and label warnings sometimes touch upon such 
differences, but do so inadequately. The warnings and 
exposure-reduction provisions on pesticide labels do 
not generally take into account nor address the height-
ened vulnerability of certain population cohorts. Labels 
on paraquat products fail to warn of neurotoxicity and 
do not mention the possible link between exposures and 
Parkinson’s disease [35]. Nearly all labels also fail to alert 
applicators spraying pesticides dozens of times annually 
that some health risks rise with repeated exposures. Nor 
do labels emphasize, or even mention the need for disci-
pline to avoid high-risk scenarios caused by weather con-
ditions, a leaky hose, or spray patterns. Rectifying these 
shortcomings warrants a global response across regula-
tory authorities, better data from specific exposure-sce-
nario research, and policy reforms.

Four Solutions to Curtail the Adverse Health Effects 
of Pesticides
Independent science in support of pesticide risk 
assessment and regulation is sorely needed
Toxicology studies that underpin pesticide risk assess-
ment and standard setting should largely be undertaken 
and analyzed by independent scientists. Currently in 
the US and in most of the world, almost all of the data 
used to regulate pesticides are derived from unpublished 
studies conducted by pesticide registrants, or compa-
nies working under contract for pesticide manufacturers 
[142]. Their job is to produce study results that support 
— and defend — existing pesticide tolerances, uses and 
registrations, and for the most part that is what they do.

As long as existing pesticide testing protocols remain 
the basis for regulation and public health protection, lit-
tle progress is likely in mitigating adverse public health 
impacts stemming from pesticide use. The gaps between 
the risks that regulators recognize and strive to mitigate, 
and risks in the real world are sizable and greatest among 
those who are heavily exposed and/or more highly 
vulnerable.

The primary toxicology data packages supporting ini-
tial registration of new active ingredients are typically 
carried out in the US or EU and submitted for evalua-
tion to the EPA and European Food Standards Agency 
(EFSA). The same core studies are usually submitted to 
multiple regulatory authorities around the world. To 
diversify and enhance the quality of the science base 
supporting pesticide risk assessments, the US EPA and 
EFSA should agree upon a process whereby registrants 
must provide sufficient funding via registration-process 
fees for the EPA or EFSA to sponsor a set of core toxi-
cology studies at a laboratory with appropriate research 
capability that is not affiliated with the industry. Another 

solution which could be implemented at essentially no 
cost is the requirement for industry-supported studies 
to be registered in advance in a publicly accessible data-
base like clinical trials for drug safety, in order to prevent 
companies from halting and never disclosing studies that 
seem to be generating unwelcomed results.

Adoption of these new approaches to enhance the 
quality of core pesticide toxicology studies won’t materi-
ally change the cost of studies supporting pesticide risk 
assessment, unless a registrant decides to also fund and/
or conduct comparable studies inhouse. In either case, 
this approach should, over time, enhance the quality and 
reliability of studies supporting key regulatory decisions, 
and overtime, enhance public trust in the science sup-
porting regulatory decisions.

Invest in direct measures of exposure
To determine which pesticides warrant stricter regula-
tion, more biomonitoring data are essential. For example 
in the Midwestern US, the spread of glyphosate-resistant 
weeds is driving upward the use of 2,4-D, dicamba, and 
glufosinate [143, 144]. Tracking the public health impacts 
of rising herbicide use in this region requires accurate 
measures of changes in exposure. Such measures can 
best be obtained via biomonitoring.

Efforts are underway in many countries to harmonize 
and aggregate human biomonitoring data to better iden-
tify vulnerable or highly exposed populations. The Euro-
pean Joint Program HBM4EU [128] shows promise in 
improving both the volume and quality of biomonitoring 
data across the EU. Biomonitoring human exposure to 
glyphosate co-formulants has been designated as a prior-
ity by HMB4EU [145]. A method to do so was recently 
created and applied to the study of the urinary excretion 
of Roundup MON 52,276 co-formulants in exposed rats 
[146]. In the US, the CDC’s National Health and Nutri-
tion Examination Survey [122] has recently developed 
new methods to test the most heavily applied herbicide 
(glyphosate [147]) and the insecticides people are most 
frequently exposed to via diet (the neonicotinoids [148]).

Place more weight on mechanistic data
DNA damage is a worrisome consequence of pesticide 
exposure and can occur via multiple mechanisms includ-
ing oxidative stress, chromosomal strand breaks, and for-
mation of adducts. A pesticide’s ability to damage DNA 
directly or indirectly is correlated with its carcinogenicity 
[149], ability to trigger developmental anomalies [150], 
and impacts on endocrine system function [151].

Prevention of oxidative stress and DNA damage should 
be key objectives of pesticide regulation [152, 153]. Yet 
the toxicological studies currently supporting pesticide 
registrations are not always capable of identifying the full 
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range of metabolic and genetic mechanisms leading to, 
causing, or exacerbating DNA damage [154]. New meth-
ods that can identify genotoxic compounds with high 
accuracy and characterize their oxidative stress related 
mode, or modes of action are already available [155]. 
While bacterial mutation assays (Ames tests) mentioned 
above were able to detect genotoxic potential in 46% of a 
set of test compounds, new assays did so with 95% accu-
racy [156]. This new generation of assays were recently 
used to compare genotoxicity profiles of glyphosate and 
three formulations [109]. This work revealed that two 
Roundup herbicides but not glyphosate activated oxida-
tive stress and led to misfolded proteins, two key charac-
teristics of human carcinogens [149].

Metabolomics is a cutting-edge technology that has 
much to offer in emerging pesticide risk assessment 
methods [157]. New findings suggest exposures to 
the  pesticides  atrazine, diazinon, glyphosate-based  her-
bicides, and trichlorfon cause sex-specific shifts in 
gut microbiota, which have been linked to many adverse 
effects in children and young adults [158–160].

For over a decade, metabolomics has been considered 
sufficiently mature to provide critical information for use 
in clinical medicine [161]. Metabolomics has, moreo-
ver, contributed to real-time diagnostics and integrative 
patient modeling during surgeries [162]. But guidelines 
for best practice and GLPs, and reporting standards 
for metabolomic results in chemical and pesticide risk 
assessment have been proposed only recently [163]. 
More funding is needed to pick up the pace in applica-
tions of metabolomics in regulation in order to buttress 
the ability of pesticide risk assessments to identify — and 
prevent — adverse public health outcomes.

It is encouraging that molecular profiling tools are 
increasingly incorporated in novel experimental sys-
tems [30, 157, 164, 165]. Such systems can detect subtle 
impacts triggered by chemical exposures that start the 
progression to disease. In recent studies, metabolomics 
has provided useful insights into the mechanisms leading 
to toxic effects of individual pesticides, and mixtures of 
pesticides at doses far below those triggering observable, 
adverse effects using standard histopathology and bio-
chemistry methods [166].

Knit scientific tools together to accelerate progress
Novel approaches are needed to integrate genetics and 
genomics, toxicology, clinical science and epidemiol-
ogy. One promising strategy is applying metabolomics 
in search of markers of epigenetic disruption in gene 
expression patterns in blood, bone marrow, and gut 
microbiomes. Unlike typical high-dose regulatory studies 
in mice and rats, metabolomic assays are being carried 

out using dose ranges that overlap current exposure lev-
els among exposed human populations [69, 157].

In vivo study designs need to evolve in order to assess 
different end-points and explore and apply new mecha-
nistic insights (e.g. how oxidative stress can promote fatty 
liver disease [167] or reproductive anomalies [168]). Pro-
gress will allow reductions in the number and diversity of 
animal studies, with potential to cut costs and promote 
more rapid progress in linking specific exposures to iden-
tified endpoints of concern [169]. Such innovation will 
be complemented by in  vitro [170] and computational 
approaches to predict adverse outcomes [171].

Novel integration of mechanistic insights and tra-
ditional toxicology are among the goals of the Global 
Glyphosate Study [172]. The pilot phase of the study sug-
gested that a glyphosate-based herbicide at the US EPA 
chronic reference dose altered sexual development in 
a rat study, damaged DNA, and disrupted the intestinal 
microbiome [47, 49, 173]. A subchronic toxicity study in 
rats used shotgun metagenomics and metabolomics to 
explore the effects of glyphosate and a GBH on the gut 
microbiome and serum metabolome [30]. This study 
revealed for the first time that glyphosate and a GBH 
inhibit the shikimate pathway in gut microbiota, and that 
the blood metabolome in exposed animals was altered in 
ways consistent with oxidative stress.

Conclusions
Improvements in pesticide risk assessment and regula-
tion are particularly vital in the case of applicator and 
worker exposures and risks. Occupational exposures 
always occur to formulated products, yet most of the 
toxicology data supporting occupational risk assessments 
are derived from studies on pure active ingredients. Laws 
and policies prohibiting the disclosure of the surfactants 
and other “inert ingredient” in formulated pesticides, and 
their concentrations, should be amended in the interest 
of public health.

The surest path to achieve significant and sustained 
reductions in the adverse impacts of pesticides is reducing 
their overall use. Doing so will require more investment 
in public and private research and technical support for 
farmers to accelerate the shift toward prevention-based, 
biointensive Integrated Pest Management [174–176].

New approaches and strategies are essential to take full 
advantage of emerging mechanistic insights in the design 
of in  vivo experiments and in the analysis of in  vivo 
results. The creative synthesis of sequencing-based tech-
nologies with clinical assessments and epidemiology has 
great potential. Such innovation is needed to better iden-
tify exposures that really matter so that real-world pesti-
cide risks can be mitigated or eliminated.
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